PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical detectors for focal plane arrays

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents progress in optical detector technologies during the past 25 years. Classification of two types of detectors (photon detectors and thermal detectors) is done on the basis of their principle of operation. The overview of optical material systems and detectors is presented. Also recent progress in different technologies is described. Discussion is focused mainly on current and the most rapidly developing focal plane arrays using: CdZnTe detectors, AlGaN photodiodes, visible CCD and CMOS imaging systems, HgCdTe heterostructure photodiodes, quantum well AlGaAs/GaAs photoresistors, and thermal detectors. The outlook for near-future trends in IR technologies is also presented.
Rocznik
Strony
221--245
Opis fizyczny
Bibliogr. 67 poz., fot., rys., wykr.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, rogan@wat.edu.pl
Bibliografia
  • 1. P.W. Kruse, L.D. McGlauchlin, and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
  • 2. P.W. Kruse, “The photon detection process”, in Optical and Infrared Detectors, pp. 5–69, edited by R.J. Keyes, Springer-Verlag, Berlin, 1977.
  • 3. D.H. Seib and L.W. Aukerman, “Photodetectors for the 0.1 to 1.0 µm spectral region”, in Advances in Electronics and Electron Physics”, Vol. 34, pp. 95–221, edited by L. Morton, Academic Press, New York, 1973.
  • 4. P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320–348, Marcel Dekker Inc., New York, 2003.
  • 5. L.J. Kozlowski, J. Montroy, K. Vural, and W.E. Kleinhans, “Ultra-low noise infrared focal plane array status”, Proc. SPIE 3436, 162–171 (1988).
  • 6. L.J. Kozlowski, K. Vural, J. Luo, A. Tomasini, T. Liu, and W.E. Kleinhans, “Low-noise infrared and visible focal plane arrays”, Opto-Electron. Rev. 7, 259–269 (1999).
  • 7. E.R. Fossum, “Active pixel sensors: Are CCD’s dinosaurs?”, Proc. SPIE 1900, 2–14 (1993).
  • 8. E.R. Fossum and B. Pain, “Infrared readout electronics for space science sensors: State of the art and future directions”, Proc SPIE 2020, 262–285 (1993).
  • 9. P.R. Norton, “Photodetectors”, in Handbook of Optics, Vol. 1, 15.3–15.100, edited by M. Bass, E.W. Van Stryland, D.R. Williams, and W.L. Wolfe, McGraw-Hill, Inc., New York, 1995.
  • 10. S. Donati, Photodetectors. Devices, Circuits, and Applications, Prentice Hall Inc., 1999.
  • 11. A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers: Amsterdam, 2000.
  • 12. A. Rogalski, “Photon detectors”, in Encyclopedia of Optical Engineering, pp. 1985–2035, edited by R. Driggers, Marcel Dekker, Inc., New York, 2003.
  • 13. J.M. Backer and R.A. Ballinga, “Photovoltaic CdHgTe-silicon hybrid focal planes”, Proc. SPIE 510, 121–129 (1984).
  • 14. A. Rogalski and Z. Bielecki, “Detection of optical radiation”, Bull. Pol. Ac.: Tech. 52, ? (2004).
  • 15. http://chandra.harvard.edu/about/science_instruments.html
  • 16. http://chandra.harvard.edu/about/focalplane.html
  • 17. http://www.varian.com/xry/prd004.html
  • 18. T. Whitaker, “CdZnTe radiation detectors”, Compound Semiconductors 5, 39–40 (1999).
  • 19. http://www.evproducts.com
  • 20. H.B. Barber, H.H. Barrett, F.L. Augustine, W.J. Hamilton, B.A. Apotovsky, E.L. Dereniak, F.P. Doty, J.D. Eskin, J.P. Garcia, D.G. Marks, K.J. Matherson, J.M. Woolfenden, and E.T. Young, “Development of a 64x64 CdZnTe array and associated readout integrated circuit for use in nuclear medicine”, J. Electron. Mater. 26, 765–772 (1997).
  • 21. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys.79, 7433–7473 (1996).
  • 22. D. Walker and M. Razeghi, “The development of nitride-based UV photodetectors”, Opto-Electron. Rev. 8, 25–42 (2000).
  • 23. F. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors”, Semicon. Sci. Technol. 18, R33–R51 (2003).
  • 24. Y.S. Park, “Wide bandgap III-Nitride semiconductors: Opportunities for future optoelectronics”, Opto-Electron. Rev. 9, 117–124 (2001).
  • 25. J.P. Long, S. Varadaraajan, J. Matthews, and J.F. Schetzina, “UV detectors and focal plane array imagers based on AlGaN p-i-n photodiodes”, Opto-Electron. Rev. 10, 251–260 (2002).
  • 26. UDT Sensors, Inc., Catalogue.
  • 27. J.R. Janesick, Scientific Charge-Coupled Devices, SPIE Press, Bellingham, 2001.
  • 28. J.R. Janesick, “Charge-coupled CMOS and hybrid detector arrays”, Proc. SPIE 5167, 1–18 (2003).
  • 29. “X-3: New single-chip colour CCD technology”, New Technology, 20–24, March/April 2002.
  • 30. http://www.kodak.com
  • 31. http://www.foveon.com
  • 32. http://www.alt-vision.com
  • 33. http://www.dalsa.com
  • 34. A.W. Hoffman, P.J. Love, and J.P. Rosbeck, “Mega-pixel detector arrays: visible to 28 µm”, Proc. SPIE 5167, 194–212 (2003).
  • 35. J. John, L. Zimmermann, S. Nemeth, T. Colin, P. Merken, S. Borghs, and C. Van Hoof, “Extended InGaAs on GaAs detectors for SWIR linear sensors”, Proc. SPIE 4369, 692–697 (2001).
  • 36. M.H. Ettenberg, M.J. Lange, M.T. O’Grady, J.S. Vermaak, M.J. Cohen, and G.H. Olsen, “A room temperature 640x512 pixel near-infrared InGaAs focal plane array”, Proc. SPIE 4028, 201–207 (2000).
  • 37. F.D. Shepherd and A.C. Yang, “Silicon Schottky retinas for infrared imaging”, Tech. Digest of IEDM, 310–313 (1973).
  • 38. W.F. Kosonocky, “Review of infrared image sensors with Schottky-barrier detectors”, Optoelectronics – Devices and Technologies 6, 173–203 (1991).
  • 39. M. Kimata, N. Yutani, N. Tsubouchi and T. Seto, “High performance 1040x1040 element PtSi Schottky-barrier image sensor”, Proc. SPIE 1762, 350–360 (1992).
  • 40. M. Kimata and N. Tsubouchi, “Schottky barier photoemissive detectors”, in Infrared Photon Detectors, pp. 299–349, edited by A. Rogalski, SPIE Optical Engineering Press, Bellingham, 1995.
  • 41. M. Kimata, M. Ueno, H. Yagi, T. Shiraishi, M. Kawai, K. Endo, Y. Kosasayama, T. Sone, T. Ozeki, and N. Tsubouchi, “PtSi Schottky-barrier infrared focal plane arrays”, Opto-Electron. Rev. 6, 1–10 (1998).
  • 42. R.J. Cashman, “Film-type infrared photoconductors”, Proc. IRE 47, 1471–1475 (1959).
  • 43. H. Zogg, “Lead chalcogenide on silicon infrared sensor arrays”, Opto-Electron. Rev. 6, 37–46 (1998).
  • 44. http://www.littoneos.com
  • 45. K. Alchalabi, D. Zimin, H. Zogg, and W. Buttler, “Monolithic heteroepiraxial PbTe-on-Si infrared focal plane array with 96x128 pixels”, IEEE Electron Dev. Lett. 22, 110–112 (2001).
  • 46. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, SPIE Press: Bellingham, 2000.
  • 47. P.J. Love, K.J. Ando, R.E. Bornfreund, E. Corrales, R.E. Mills, J.R. Cripe, N.A. Lum, J.P. Rosbeck, and M.S. Smith, “Large-format infrared arrays for future space and ground-based astronomy applications”, Proc. SPIE 4486, 373–384 (2002).
  • 48. M.B. Reine, “Photovoltaic detectors in MCT”, in Infrared Detectors and Emitters: Materials and Devices, pp. 279–312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2000.
  • 49. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).
  • 50. M.A. Kinch, “HDVIP™ FPA technology at DRS”, Proc. SPIE 4369, 566–578 (2001).
  • 51. K. Vural, L.J. Kozlowski, D.E. Cooper, C.A. Chen, G. Bostrup, C. Cabelli, J.M. Arias, J. Bajaj, K.W. Hodapp, D.N.B. Hall, W.E. Kleinhans, G.G. Price, and J.A. Pinter, “2048x2048 HgCdTe focal plane arrays for astronomy applications”, Proc. SPIE 3698, 24–35 (1999).
  • 52. http://www.rsc.rockwell.com/imaging/
  • 53. http://compoundsemiconductor.net/articles/news/6/8/5/1
  • 54. http://www.iaf.fhg.de/buisqwfp/
  • 55. A. Rogalski, “Quantum well photoconductors in infrared detector technology”, J. Appl. Phys. 93, 4355–4391 (2003).
  • 56. H. Schneider, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, P. Koidl, G. Weimann, J. Ziegler, R. Breiter, and W. Cabanski, “Low-noise QWIPs for FPA sensors with high thermal resolution”, Proc. SPIE 4130, 353–362 (2000).
  • 57. H. Schneider, P. Koidl, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, and G. Weimann, “Ten years of QWIP development at Fraunhofer”, Infrared Phys. Technol. 42, 283–289 (2001).
  • 58. S.D. Gunapala, S.V. Bandara, J.K. Liu, B. Rafol, and J.M. Mumolo, “640x512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays”, IEEE Trans. Electron Devices 50, 2353–2360 (2004).
  • 59. M. Jhabvala, K. Choi, A. Goldberg, A. La, and S. Gunapala, “Development of a 1kx1k GaAs QWIP far IR imaging array”, Proc. SPIE 5167, 175–185 (2004).
  • 60. Semiconductors and Semimetals, Vol. 47, edited by P.W. Kruse and D.D. Skatrud, Academic Press, San Diego (1997).
  • 61. P.W. Kruse, “Uncooled IR focal plane arrays”, Opto-Electron. Rev. 7, 253–258 (1999).
  • 62. D. Murphy, M. Ray, R. Wyles, J. Asbrock, N. Lum, A. Kennedy, J. Wyles, C. Hewitt, G. Graham, W. Radford, J. Anderson, D. Bradley, R. Chin, and T. Kostrzewa, “High sensitivity (25 µm pitch) microbolometer FPAs and application development”, Proc. SPIE 4369, 222–234 (2001).
  • 63. P.W. Kruse, Uncooled Thermal Imaging. Arrays,Systems, and Applications, SPIE Press, Bellingham, 2001.
  • 64. http://fifi-ls.mpg-garching.mpg.dr/detector.html
  • 65. A. Rogalski, “Third-generation infrared photon detectors”, Opt. Eng. 42, 3498–3516 (2003).
  • 66. T. Whitaker, “Sanders’ QWIPs detect two colour at once”, Compound Semiconductors 5, 48–51, 1999.
  • 67. S.D. Gunapala, S.V. Bandara, J.K. Liu, B. Rafol, J.M. Mumolo, C.A. Shott, R. Jones, J. Woolaway, J.M. Fastenau, A.K. Liu, M. Jhabvala, and K.K. Choi, “640x512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol. 44, 411–425 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0108
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.