PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal growth of the oxide fiber single crystal for optical applications

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, certain materials have attracted attention for a new generation of high speed, efficient, multi-functional optical devices. Among these materials, small-diameter and long-length bulk crystals are of considerable interest for miniaturization and high efficiency. In particular, rod or fiber-like micro-single crystals have already received attention as attractive materials for a variety of electro-optical application, such as second harmonic generation (SHG), micro-laser sources or optical memory arrangements because of their extended interaction length and high optical intensity.
Rocznik
Strony
199--212
Opis fizyczny
Bibliogr. 88 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Advanced Materials Engineering, Sungkyunkwan University, 440-746 Suwon, Korea, dhyoon@skku.edu
Bibliografia
  • 1. S. Sudo, I. Yokohama, A. Cordova-Plaza, M.M. Fejer, and R.L. Byer, “Uniform refractive index cladding for LiNbO3 single-crystal fibers”, Appl. Phys. Lett. 56, 19–31 (1990).
  • 2. L. Hesselink and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers”, Opt. Lett. 13, 877–879 (1988).
  • 3. H. Yoshinaga and K. Kitayama, “Holographic image storage in iron-doped lithium niobate fibers”, Appl. Phys. Lett. 56, 1728–1730 (1990).
  • 4. J. Stone, C.A. Burrus, and A.G. Dentai, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump”, Appl. Phys. Lett. 29, 37–39 (1976).
  • 5. D.H. Jundt, M.M. Fejer, and R.L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems”, Appl. Phys. Lett. 55, 2170–2172 (1989).
  • 6. D.H. Yoon, M. Hashimoto, and T. Fukuda, “Growth and characterization of K3Li2–xNb5+xO15+2x micro single crystals formed by the µ-pulling down method for blue SHG applications”, Jap. J. Appl. Phys. 33, 3510–3513 (1994).
  • 7. C.A. Burrus and J. Stone, “Room-temperature continuous operation of a ruby fiber laser”, J. Appl. Phys. 49, 3118–3123 (1978).
  • 8. R.S. Feigelson, “Pulling optical fibers”, J. Crystal Growth 79, 669–680 (1986).
  • 9. M.M. Fejer, J.L. Nightingale, G.A. Magel, and R.L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibes”, Rev. Sci. Instr. 55, 1791–1796 (1984).
  • 10. M. Saifi, B. Dubois, E.M. Vogel, and F.A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers”, J. Mater. Res. 1, 452–456 (1986).
  • 11. J.K. Yamamoto, S.A. Markgraf, and A.S. Bhalla, “SrxBa1–xNb2O6 single crystal fibers: dependence of crystal quality on growth parameters”, J. Crystal Growth 123, 423–435 (1992).
  • 12. H. Oguri, H. Yamamoto, and T. Orito, “Growth of MgO doped LiNbO3 single crystal fibers by a novel drawing down method”, J. Crystal Growth 110, 669–676 (1991).
  • 13. N. Ohnishi and T. Yao, “A novel growth technique for single-crystal fibers: the micro-czochralski (µ-CZ) method”, Jap. J. Appl. Phys. 28, L278–L280 (1989).
  • 14. L.G. Van Uitert, S. Singh, H.J. Levinstein, J.E. Geusic, and W.A. Bonner, “A new and stable nonlinear optical material”, Appl. Phys. Lett. 11, 161–163 (1967).
  • 15. L.G. Van Uitert, H.J. Levinstein, J.J. Rubin, C.D. Capio, E.F. Dearborn, and W.A. Bonner, “Some characteristics of niobates having ‘filled’ tetragonal tungsten bronze-like structures”, Mat. Res. Bull. 3, 47–57 (1968).
  • 16. B. Herreros and G. Lifante, “LINBO3 optical wave-guides by Zn diffusion from vapour-phase”, Appl. Phys. Lett. 66, 1449–1451 (1995).
  • 17. M. Tsuda, K. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation”, J. Appl. Phys. 85, 29–37 (1999).
  • 18. V. Bermudez, J. Capmany, J. Garcia Sole, and E. Diehguez, “Growth and second harmonic generation characterization of Er3+ doped bulk periodically poled LiNbO3”, Appl. Phys. Lett. 73, 593–595 (1998).
  • 19. J. Zheng, Y. Lu, G. Luo, J. Ma, and Y. Lu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling”, Appl. Phys. Lett. 72, 1808–1810 (1998).
  • 20. J. D. Hunt and K.A. Jackson, “Binary eutectic solidification”, Trans. Metall. Soc. AIME 236, 843–852 (1966).
  • 21. R. Elliot, “Eutectic solidification”, Int. Met. Rev. 22, 161–186 (1977).
  • 22. W. Kurz and D.J. Ficher, “Dendrite growth in eutectic alloys: the coupled zone”, Int. Met. Rev. 24, 177–204 (1979).
  • 23. W.A. Bonner, W.H. Grodkiewicz, and L.G. Van Uitert, “The growth of K0.6Li0.4NbO3 crystals for electro-optic and non-linear applications”, J. Crystal Growth 1, 318–319 (1967).
  • 24. T. Fukuda, “Growth and crystallographic characteristics of K3Li2Nb5O15 single crystals”, Jap. J. Appl. Phys. 8, 122–129 (1969).
  • 25. J.M. Ko, H. Cho, S.H. Kim, J.K. Choi, and K.H. Auh, “A study on the optical properties of LiNbO3 single crystal grown by floating zone method”, J. Kor. Ass. Crystal Growth 5, 318–331 (1995).
  • 26. V.S. Stubican and R.C. Bradt, “Eutectic solidification in ceramic systems”, Annu. Rev. Mater. Sci. 11, 267–297 (1981).
  • 27. J.D. Hunt and S.Z. Lu, Handbook of Crystal Growth 2, 1111 (1994).
  • 28. K. Imai, M. Imaeda, S. Uda, T. Taniuchi, and T. Fukuda, “Homogeneity and SHG properties of K3Li2–xNb5+xO15+2x single crystals grown by micro-pulling-down technique”, J. Cryst. Growth 177, 79–87 (1997).
  • 29. S. Uda and W.A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3”, J. Crystal Growth 121, 93–110 (1992).
  • 30. S. Uda and W.A. Tiller, “Cr migration associated with interface electric fields during transient LiNbO3 crystal growth”, J. Crystal Growth 126, 396–412 (1993).
  • 31. L. Galambos, S. Erdei, I. Tanaka, L. Hesselink, L.E. Cross, R.S. Feigelson, F.W. Ainger, and H. Kojima, “Inhomogeneities and segregation behaviour in strontium-barium niobate fibers grown by laser-heated pedestal growth technique”, J. Crystal Growth 167, 660–669 (1996).
  • 32. W.G. Pfann, Zone Melting, Wiley, New York, 1966.
  • 33. S. Erdei, L. Galambos, I. Tanaka, L. Hesselink, L.E. Cross, R.S. Feigelson, F.W. Ainger and H. Kojima, “Inhomogeneities and segregation behaviour in strontium–barium niobate fibers grown by laser-heated pedestal growth technique”, J. Crystal Growth 167, 670–680 (1996).
  • 34. X. Qi, R. Illingworth, H.G. Gallagher, T.P.J. Han, and B. Henderson, “Potential laser gain media with the stoichiometric formula RETiNbO6”, J. Crystal Growth 160, 111–118 (1996).
  • 35. J.A. Burton, R.C. Prim, and W.P. Slichter, “The distribution of solute in crystals grown from the melt”, J. Chem. Phys. 21, 1987–1991 (1953).
  • 36. P. Rudolph, “The virtues of Fukuda laboratory of crystal growth”, III-Vs Review, Elsevier 9, 27–32 (1996).
  • 37. D.H. Yoon and T. Fukuda, “Characterization of LiNbO3 micro single crystals grown by the micro-pulling-down method”, J. Crystal Growth 144, 201–206 (1994).
  • 38. D.H. Yoon and T. Fukuda, “Compositional homogeneity of potassium lithium niobate crystals grown by micro pulling down method”, J. Kor. Ass. Crystal Growth 4, 405–410 (1994).
  • 39. D.H. Yoon, P. Rudolph, and T. Fukuda, “Morphological aspects of potassium lithium niobate crystals with acicular habit grown by the micro-pulling-down method”, J. Crystal Growth 144, 207–212 (1994).
  • 40. D.H. Yoon, I. Yonenaga, and T. Fukuda, “Characterization of dislocations in a LiNBO3 single-crystal grown by micro-pulling-down method”, Cryst. Res. Technol. 29, 1119–1122 (1994).
  • 41. D.H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method”, J. Crystal Growth 142, 339–343 (1994).
  • 42. R.S. Feigelson, W.L. Kway, and R.K. Route, “Single-crystal fibers by the laser-heated pedestal growth method”, Opt. Eng. 24, 1102–1107 (1985).
  • 43. S. Uda, J. Kon, K. Shimamura, and T. Fukuda, “Analysis of Ge distribution in Si1–xGex single crystal fibers by the micro-pulling down method”, J. Crystal Growth 167, 64–73 (1996).
  • 44. J.J.E. Reid, “Resonantly enhanced, frequency doubling of an 820 nm gaalas diode-laser in a potassium lithium-niobate crystal”, Appl. Phys. Lett. 62, 19–21 (1993).
  • 45. T. Fukuda, H. Hirano, and S. Koide, “Growth and properties of ferroelectric K3Li2(TaxNb1–x)5O15”, J. Crystal Growth 6, 293–296 (1970).
  • 46. F.D. Bloss, Crystallography and Crystal Chemistry, Holt, Rinehart and Winston, New York, 1971.
  • 47. A.A. Chernov, Modern Crystallography, Springer Series in Solid-State Sciences, Vol. 36, Springer, Berlin, 1984.
  • 48. D.H. Yoon and T. Fukuda, “Second harmonic generation (SHG) properties of potassium lithium niobate crystals grown by Mu-PD method”, J. Kor. Ass. Crystal Growth 5, 94–99 (1995).
  • 49. D.H. Yoon, N. Shimo, M. Hashimoto, Y. Okano, T. Sasaki, and T. Fukuda, “Growth of non-linear optical K3Li2–xNb5+xO15 single crystal from the incongruent solution”, The 37th Discussion Meeting of Synthetic Crystal A02, 7–8 (1992).
  • 50. K. Kawasaki, Y. Okano, S. Kan, M. Sakamoto, K. Hoshikawa, and T. Fukuda, “Uniformity of Fe-doped LiNbO3 single crystal grown by the Czochralski method”, J. Crystal Growth 119, 317–321 (1992).
  • 51. H.M. O’Bryan, P.K. Gallagher, and C.D. Brandle, “Congruent composition and Li-rich phase boundary of LiNBO3”, J. Am. Ceram. Soc. 68, 493–496 (1985).
  • 52. K. Nassau, H.J. Livingstein, and G.M. Loiacono, “Ferroelectric lithium niobate 1. growth, domain structure, dislocations and etching”, J. Phys. Chem. Solids 27, 983–988 (1966).
  • 53. N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate”, Jap. J. Appl. Phys. 6, 318–327 (1967).
  • 54. Y.S. Luh, R.S. Feigelson, M.M. Fejer, and R.L. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers”, J. Crystal Growth 78, 135–143 (1986).
  • 55. B.K. Vainshtein, V.M. Fridkin, and V.L. Indenbom, “Structure of crystals”, in Modern Crystallography, Springer Series in Solid-State Sciences”, Vol. 21 Springer, Berlin, 1982.
  • 56. S.V. Tsivinsky, “Factors governing dislocation density in Czochralski method of growing crystals”, Fiz. Metallov Metalloved. 25, 55–63 (1968).
  • 57. S. Arahira, K. Watanabe, K. Shinozaki, and Y. Ogawa, “Successive excited-state absorption through a multistep process in highly Er3+-doped fiber pumped by a 1.48 µm laser diode”, Opt. Lett. 17, 1679–1681 (1992).
  • 58. J. Thogersen, N. Bjerre and J. Mark, “Multiphoton absorption and cooperative upconversion excitation in Er3+-doped fibers,” Opt. Lett, 13, 197–199 (1993).
  • 59. R. L. Laming, S.B. Poole, and E.J. Tarbox, “Pump excited-state absorption in erbium-doped fibers”, Opt. Lett. 13, 1084–1086 (1988).
  • 60. J.F. Massicott, M.C. Brierley, R. Wyatt, S.T. Davey, and D. Szebesta, “Low threshold, diode pumped operation of a green, Er3+ doped fluoride fibre laser”, Electron Lett. 29, 2119–2120 (1993).
  • 61. J.Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser”, Electron Lett. 28, 111–113 (1992).
  • 62. T.J. Whitley, C.A. Millar, R. Wyatt, M.C. Brierly, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre”, Electron Lett. 27, 1785–1786 (1991).
  • 63. M. Fleuster, Ch. Buchal, E. Snoeks, and A. Ploman, “Rapid thermal annealing of MeV erbium implanted LiNbO3 single crystals for optical doping”, J. Appl. Phys. 75, 225–227 (1994).
  • 64. M. Tsuda, K. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800-nm excitation”, J. Appl. Phys. 85, 29–37 (1999).
  • 65. J.W. Shur, W.S. Yang, S.J. Suh, J.H. Lee, T. Fukuda, and D.H. Yoon, “Growth and characterization of Er-doped stoichiometric LiNbO3 single crystal fibers by the micro-pulling down method”, J. Crystal Growth 229, 223–227 (2001).
  • 66. J.W. Shur, W.S. Yang, S.J. Suh, J.H. Lee, T. Fukuda, and D.H. Yoon, “Optical properties of Er doped congruent and stoichiometric LiNbO3 single crystals”, Cryst. Res. Technol. 37, 353–358 (2002).
  • 67. J. Amin, B. Dussardier, T. Schweizer, and M. Hempstead, “Spectroscopic analysis of Er3+ transitions in lithium niobate”, J. Lumin. 69, 17–26 (1996).
  • 68. G. Zhong, J. Jia, and Z. Wu, Proc. 11th International Quantum Electronics Conference, IEEE Catalogue No. 80CH 1561-0, p. 631.
  • 69. J.W. Shur, W.N. Jeon, S.M. Lee, W.S. Yang, H.Y. Lee, and D.H. Yoon, “Up-conversion property of Er2O3 and MgO co-doped stoichiometric LiNbO3 single crystal by using the µ-PD method”, J. Kor. Ceram. Soc. 39, 835–839 (2002).
  • 70. W.S. Yang, S.J. Suh, J.H. Lee, T. Fukuda, and D.H. Yoon, “Growth and upconversion properties of erbium doped LiNbO3 single crystal fibers”, J. Kor. Asso. Crystal Growth 9, 377–380 (1999).
  • 71. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3”, J. Opt. Soc. Am. B12, 2102–2117 (1995).
  • 72. W.S. Yang, J.H. Lee, T. Fukuda, and D.H. Yoon, “Micro-pulling down growth of Co-doped lithium niobate single crystal fibers according Er and Mg contents and photolumenescence properties”, Cryst. Res. Technol. 36, 519–525 (2001).
  • 73. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku, “A ductile ceramic eutectic composite with high strength at 1.873 K”, Nature 389, 49–52 (1997).
  • 74. T.A. Parthasarathy, T.Y. Mah, and L.E. Matson, “Deformation behaviour of an Al2O3/Y3Al5O12 eutectic comparison with sapphire and YAG.”, J. Am. Ceram. Soc. 76, 29–32 (1993).
  • 75. Y. Waku, H. Ohtsubo, N. Nakagawa, and Y. Koutoku, “Sapphire matrix composites reinforced with single crystal YAG phases”, J. Mater. Sci. 31, 4663–4670 (1996).
  • 76. Y. Waku, N. Nakagawa, H. Ohtsubo, Y. Ohsora, and Y. Kohtoku, “High-temperature properties of unidirectionally solidified Al2O3/YAG composites”, J. Jap. Inst. Met. 59, 71–78 (1995).
  • 77. Yoshikawa, B.M. Epelbaum, T. Fukuda, K. Suzuki, and Y. Waku, “Growth of Al2O3/Y3Al5O12 eutectic fiber by micro-pulling-down method and its high-temperature strength and thermal stability”, Jap. J. Appl. Phys. 38, L55–L58 (1999).
  • 78. F. Schmid and D. Viechnicki, “Oriented eutectic microstructures in system Al2O3/ZrO2”, J. Mater. Sci. 5, 470–473 (1970).
  • 79. S. Bourban, N. Karapatis, H. Hopmann, and W. Kurz, “Solidification microstructure of laser remelted Al2O3-ZrO2 eutectic”, Acta Mater. 45, 5069–5075 (1997).
  • 80. T. Ando and Y. Shiohara, “Metastable alumina structures in melt-extracted alumina-25 wt% zirconia and alumina-42 wt% zirconia ceramics”, J. Am. Ceram. Soc. 74, 410–417 (1991).
  • 81. G.R. Fischer, L.J. Manfredo, R.N. MaNally, and R.C. Doman, “The eutectic and liquids in the Al2O3-ZrO2 system”, J. Mater. Sci. 16, 3447–3451 (1981).
  • 82. J. Echigoya, Y. Takabayashi, H. Suto, and M. Ishigame, “Structure and crystallography of directionally solidified Al2O3-ZrO2 eutectic by the floating zone-melting method”, J. Mater. Sci. Lett. 5, 150–152 (1986).
  • 83. J.H. Lee, A. Yoshikawa, S.D. Durbin, D.H. Yoon, T. Fukuda, and Y. Waku, “Microstructure of Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method”, J. Crystal Growth 222, 791–796 (2001).
  • 84. D.H. Yoon, I. Yonenaga, N. Onishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method”, J. Crystal Growth 142, 339–343 (1994).
  • 85. B.M. Epelbaum, A. Yoshikawa, K. Shimamura, T. Fukuda, K. Suzuki, and Y. Waku, “Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown by µ-PD method”, J. Crystal Growth 198/199, 471–475 (1999).
  • 86. A. Yoshikawa, B.M. Epelbaum, K. Hasegawa, S.D. Durbin, and T. Fukuda, “Microstructures in oxide eutectic fibers grown by a modified micro-pulling-down method”, J. Crystal Growth 205, 305–316 (1999).
  • 87. A. Yoshikawa, K. Hasegawa, J.H. Lee, S.D. Durbin, B.M. Epelbaum, D.H. Yoon, T. Fukuda, and Y. Waku, “Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3 (RE = Sm–Lu, Y) eutectics”, J. Crystal Growth 218, 67–73 (2000).
  • 88. J.H. Lee, A. Yoshikawa, H. Kaiden, T. Fukuda, D.H. Yoon, and Y. Waku, “Growth and characterization of Al2O3-based Y3Al5O12, ZrO2 binary and ternary eutectic fibers”, J. Kor. Ass. Crystal Growth 11, 170–175 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0106
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.