PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uncooled operation of IR photodetectors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
XVII School of Optoelectronics : Photovoltaics-Solar Cells and Detector ; (17. ; 13-17.10.2003 , Kazimierz Dolny, Poland)
Języki publikacji
EN
Abstrakty
EN
The ultimate performance of long wavelength infrared photodetectors operating at high temperatures is likely to be limited by the noise due to the statistical nature of thermal generation of charge carriers in narrow band gap semiconductors. Additional obstacles to achieve theoretical performance in practical devices arise from weak absorption of infrared radiation, short diffusion length of charge carriers in narrow gap semiconductors and other reasons. Various ways to improve performance of uncooled photodetector such as the reduction of thermal generation rate by proper selection of the semiconductor material, its doping and suppression of thermal generation by the non-equilibrium mode of operation are considered. Another possibility is the reduction of physical volume of a detector. This can be done by reducing a detector physical area and its thickness with appropriate means to preserve the device field of view and a quantum efficiency. The advanced architectures of uncooled Hg1-xCdxTe IR photoconductors, photoelectromagnetic and photovoltaic detector are described. The devices require heterostructures with complex band gap and doping profiles and can be grown by the low temperature epitaxial techniques. The most promising device for uncooled detection is heterojunction photodiode integrated with optical concentrator. The progress in technology of photodetectors will eventually lead to perfect and fast detection of long wavelength radiation without cooling.
Twórcy
  • Military Institute of Armament Technology, 7 Prymasa Wyszyńskiego Str., 05-220 Zielonka, Poland, jpiotr@vigo.com.pl
Bibliografia
  • 1. J. Piotrowski, W. Galus, and M. Grudzien, “Near room-temperature IR photodetectors”, Infrared. Phys. 31, 1–48 (1990).
  • 2. T. Elliott, “Non-equilibrium modes of operation of narrow-gap semiconductor devices”, Semicond. Sci. Technol. 5, S30–S37 (1990).
  • 3. C.T. Elliott and N.T. Gordon, “Infrared Detectors”, in Handbook on Semiconductors, Vol. 4, pp. 841–936, edited by C. Hilsum, North-Holland, Amsterdam, 1993.
  • 4. J. Piotrowski. “Hg1-xCdxTe infrared photodetectors”, in Infrared Photon Detectors, 391–494, edited by A.. Rogalski, SPIE Press, Bellingham, 1995.
  • 5. J. Piotrowski and M. Razeghi, “Improved performance of IR photodetectors with 3D gap engineering”, Proc. SPIE 2397, 180–192 (1995).
  • 6. K. Adamiec, M. Grudzien, Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musc, and L. Faraone, “Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors“, Proc. SPIE 2999, 34–43 (1997).
  • 7. J. Piotrowski and A. Rogalski: “Photoelectromagnetic, magnetoconcentration and Dember infrared detectors”, in Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, edited by P. Capper, Chapman and Hall, London, 1997.
  • 8. J. Piotrowski and W. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector material”, Infrared Phys. Technol. 38, 63–68 (1997).
  • 9. C. Musca, J. Antoszewski, J. Dell, L. Faraone J. Piotrowski, and Z. Nowak, “Multi-junction HgCdTe long wavelength infrared photovoltaic detector for operation at near room temperature”, J. Electr. Mat. 27, 740–746 (1998).
  • 10. J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, “A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicond. Sci.Technol. 13, 1209–1214 (1998).
  • 11. T. Elliott, N.T. Gordon, and A..M. White “Towards background-limited, room-temperature, infrared photon detectors in the 3–13 µm wavelength range”, Appl. Phys. Lett. 74, 2881–2883 (1999).
  • 12. M.A. Kinch, “Fundamental physics of infrared detector materials”, J. Electron. Mater. 29 809-817 (2000).
  • 13. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow Gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000.
  • 14. J. Piotrowski, M. Grudzieñ, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg1-xCdxTe LWIR detectors”, Proc. SPIE 4130, 175–184 (2000).
  • 15. H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncoded InAs–GaSb type–II infrared detectors grown on GaAs substrates for the 8–12 µm atmospheric window”, IEEE J. Quant. Electron. 35, 1041–1044 (1999).
  • 16. N. Murdin, M. Kamal-Saadi, A. Lindsay, E.P. O’Reilly, and A.R. Adams, G.J. Nott, J.G. Crowder, and C.R. Pidgeon, I.V. Bradley, and J.-P.R. Wells, T. Burke, A.D. Johnson, and T. Ashley. “Auger recombination in long-wavelength infrared InNxSb1-x”, Appl. Phys. Lett. 78, 1568–1570 (2001).
  • 17. J. Piotrowski, “Suppression of Auger generation as the way to perfect detection of infrared radiation”, Armament Technology Problems 82, 57–68 (2002). (in Polish).
  • 18. J. Piotrowski, “Uncooled IR photodetectors get a performance boost”, Photonics 37, 97–99 (2003).
  • 19. J. Piotrowski, P. Brzozowski, and K. Jóźwikowski, “Stacked multijunction photodetectors of long wavelength radiation”, J. Electron. Mat. 32, 672–676 (2003).
  • 20. M.K. Ashby, N. T. Gordon, C. T. Elliott, C.L. Jones, C.D. Maxey, L. Hipwood, and R. Catchpole, “Investigation into the source of 1/f noise in Hg1-xCdxTe diodes”, U.S. Workshop on the Physics and Chemistry of II–VI Materials, Extended Abstract, 127–130 (2003).
  • 21. C.L. Jones, N.E. Metcalfe, A. Best, R. Catchpole, C.D. Maxey, N.T Gordon, R.S. Hall, T. Colin, and T. Skauli, “Effect of device processing on 1/f noise in uncooled, Auger-ssuppressed CdHgTe diodes”, J. Electr. Mat. 27, 733–739 (1998).
  • 22. Vigo Systems Data Sheets 2000, www.vigo.com.pl.
  • 23. Vigo Systems S.A. Unpublished results (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.