PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Photodecay method in investigation of materials and photovoltaic structures

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
XVII School of Optoelectronics : Photovoltaics-Solar Cells and Detector ; (17. ; 13-17.10.2003 , Kazimierz Dolny, Poland)
Języki publikacji
EN
Abstrakty
EN
Measurements of recombination parameters of both photoconductive materials and structures (solar cells) have been described. For materials, the methods are based on both steady-state photoconductivity (or quasi steady-state photoconductivity) and photocurrent decay PCD experiments. Examples of PCD measurements taken from literature for c-Si wafers and our own experiments for amorphous a-Si:H and a-SiC:H samples have been discussed. Investigation of solar cells based on the most popular photovoltage decay technique is widely described. Measurement and interpretation details have been discussed. Theoretical description and experimental evidence is, however, focused on combined photovoltage and photocurrent decays technique, developed in the authors’ laboratory. This technique enables us determination of both minority carrier lifetime and surface recombination velocity of photocarriers. The measurement setup enabling determination of both open circuit voltage and short circuit current decay times has been described.
Twórcy
  • Department of Electronics, AGH-University of Science and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland, pisar@agh.edu.pl
Bibliografia
  • 1. R.A. Sinton and A. Cuevas, “Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett. 69, 2510–2512 (1996).
  • 2. R.A. Sinton and A. Cuevas, “A quasi-steady-state open-circuit voltage method for solar cell characterisation”, 16th European Photovoltaic Solar Energy Conference, 1–5 May,Glasgow, UK, 1152–1155 (2000).
  • 3. D.T. Stevenson and R.J. Keyes, “Measurement of carrier lifetime in germanium and silicon”, J. Appl. Phys. 26, 190 (1955).
  • 4. S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
  • 5. A. Cuevas, M. Stocks, D. Macdonald, and R. Sinton, “Applications of the quasi-steady-state-photoconductance technique”, 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, 6-10 July, Vienna, Austria, 1236–1241 (1998).
  • 6. J. Schmidt and A.G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono- and multicrystalline silicon wafers”, J. Appl. Phys. 81, 6186–6199 (1997).
  • 7. Ch. Berge, J. Schmidt, B. Lenkeit, H. Nagel, and A.G. Aberle, “Comparison of effective carrier lifetimes in silicon determined by transient quasi-steady-state photoconductance measurements”, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6–10 July, Vienna, Austria, 1426–1429 (1998).
  • 8. T. Pisarkiewicz, Amorphous Silicon-Carbon and Silicon-Germanium Alloys as New Optoelectronic Materials, AGH Press, Krakow, 1996.
  • 9. H. Haridim, M. Zelikson, and K. Weiser, “Trapping effects in a-Si:H investigated by small-signal transient photoconductivity and the steady-state photocarrier-grating technique”, Phys. Rev. B49, 13394–13399 (1994).
  • 10. G.J. Adriaenssens, S.D. Baranovskii, W. Fuhs, J. Jansen, and Ö. Öktü, “Photoconductivity response time in amorphous semiconductors”, Phys. Rev. B51, 9661–9667 (1995).
  • 11. H. Fritzsche, B.G. Yoon, D.Z. Chi, and M.Q. Tran, “Some observations on the photoconductivity of amorphous semiconductors”, J. Non-Cryst. Solids 141, 123–132 (1992).
  • 12. B.H. Rose and H.T. Weaver, “Determination of effective surface recombination velocity and minority carrier lifetime in high-efficiency Si solar cells”, J. Appl. Phys. 54, 238–247 (1983).
  • 13. B. Bitnar, R. Glatthaar, C. Marckmann, M. Spiegel, R. Tölle, P. Fath, G. Willeke, and E. Bucher, “Lifetime investigations on screenprinted silicon solar cells”, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6-10 July, Vienna, Austria, 1362–1365 (1998).
  • 14. P. Wójcik, T. Pisarkiewicz, and T. Stapiński, “Photoconductivity decay in thin film solar cell structures”, Europ. Microelectronis Packaging and Interconnection Symp. Proc., Cracow, 16–18 June, 350–352 (2002).
  • 15. P. Wójcik, T. Stapiński, and T. Pisarkiewicz, “Materials for solar cells studied by photoconductivity methods”, Proc. Int. Conf. PV in Europe, Rome, 7–11 Oct., 194–197 (2002).
  • 16. R. Salach-Bielecki, T. Pisarkiewicz, T. Stapiński, and P. Wójcik, “Influence of junction parameters on the open circuit voltage decay in solar cells”, Opto-Electron. Rev. 12, 79–83 (2004).
  • 17. B. Kern and H.G. Wagemann, “Determination of the volume diffusion length of minority carriers within the base region of monocrystalline solar cells by means of transient measurements”, Archiv für Elektrotechnik 72, 157–164 (1989).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.