Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
XVII School of Optoelectronics : Photovoltaics-Solar Cells and Detector ; (17. ; 13-17.10.2003 , Kazimierz Dolny, Poland)
Języki publikacji
Abstrakty
The traditional development of photovoltaics has been based on crystalline-silicon wafer technology. In the early 1970’s, however, a new approach arises based on the possibility to grow silicon in the form of a thin film onto a given substrate. Several techniques are used for such a deposition, among which plasma-enhanced chemical vapour deposition (PECVD) is clearly outstanding given its widespread use and success. More recently, very-high-frequency (VHP PECVD) and hot-wire CVD have appeared as very promising and fast developing alternatives with important potential and actual advantages. Thin-film technology introduces completely novel concepts and challenges in silicon photovoltaics. Low-temperature processes particularly adequate for large-area devices open up not only very important cost-reduction potential, but also new possibilities such as making semi-transparent or flexible modules. Additional important features are a highly automated production system, an enormous potential for building integration, a good performance at realistic working temperatures (around 40 C) and an excellent durability in outdoor conditions among others. Photovoltaics are facing important challenges for the near future. Silicon-wafer technology is evolving towards making thinner, cheaper, multicrystalline silicon. Thin-film-silicon researchers are in turn striving to make thicker, better, more crystalline films. Both ways seem to converge to new-generation photovoltaics in which wafer and thin-film technologies may be used in a synergistic rather than competing manner. Silicon heterojunction cells (made up of a crystalline silicon absorber onto which one or more thin-film silicon layers are deposited), such as the well-known HIT cell, are in the forefront of photovoltaics and may represent a breakthrough in the next few years.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- CIEMAT, 22 Avda. Complutense, E-28040 Madrid, Spain
autor
- CIEMAT, 22 Avda. Complutense, E-28040 Madrid, Spain
Bibliografia
- 1. H.F. Sterling and R.C.G. Swann, Solid-State Electron. 8, 653 (1965).
- 2. R.C. Chittick and J.H. Alexander, J. Electrochem. Soc. 116, 77 (1969).
- 3. W.E. Spear and P.G. LeComber, Solid State Commun. 17, 1193 (1975).
- 4. D.E. Carlson and C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976).
- 5. A. Matsuda, J. Non-Cryst. Solids 59/60, 767 (1983).
- 6. Y. Hattori and D. Kruangam, Tech. Dig. PVSEC-3, 171 (1987).
- 7. M. Faraji, Appl. Phys. Lett. 60, 3289 (1992).
- 8. J.K. Rath, Techn. Dig. 9th Int. PVSEC, Miyazaki–Japan, 227 (1996).
- 9. J. Merten, IEEE Transactions on Electron Devices 45, 423 (1998).
- 10. J.P. Kalejs, Sol. En. Mat. & Solar Cells 72, 139–153 (2002).
- 11. A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, and U. Graf, Thin Solid Films 403/404, 179–187 (2002).
- 12. R.E.I. Schropp, Thin Solid Films 403/404, 17–25 (2002).
- 13. M. Galluppi, R. Nacci, F. Ferrazza, W. Schmidt; J. Carabe, J.J. Gandia, F. Roca, and A. Bjorseth, Proc. 17th European Photovoltaic Solar Energy Conf., Munich, Germany, 1643–1645 (2001).
- 14. Y. Hamakawa, Appl. Surf. Science 142, 215–226 (1999).
- 15. H. Sakata, T. Nakai, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi and S. Kiyama, Proc. 28th IEEE PVSC, Anchorage (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0073