PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fingerprint identification by using artificial neural network with optical wavelet preprocessing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advantages of optical wavelet transform used as a preprocessor for an artificial neural network are investigated. We show by digital simulation that this set-up can successfully identify and discriminate complex biometric images, such as fingerprints. The achieved capabilities include limited shift-, rotation-, scale- and intensity - invariance. We also show that the edges-enhancement filter, applied before the wavelet transform, significantly improves abilities of the system.
Twórcy
autor
  • Division of Information Optics, Institute of Geophysics, Faculty of Physics, Warsaw University, 7 Pasteura Str., 02-093 Warsaw, Poland
  • Division of Information Optics, Institute of Geophysics, Faculty of Physics, Warsaw University, 7 Pasteura Str., 02-093 Warsaw, Poland
Bibliografia
  • 1. S. Prabhakar, S. Pankanti, and A.K. Jain, "Biometrics recognition: security and privacy concerns", IEEE Security & Privacy Magazine 1, 33-42 (2003).
  • 2. A. Ross, A. Jain, and J. Reisman, "A hybrid fingerprint matcher", Pattem Recognition 36, 1661-1673 (2003).
  • 3. J. Rodolfo, H. Rajbenbach , and J.P. Huignard, "Performance of a photorefractive joint transform correlator for fingerprint identification", Optical Engineering 34, 1166-1171 (1995).
  • 4. Y. Pétillot, L. Guibert, and J.L. de Bougrenet de la Tocnaye, "Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator", Optics Communications 126, 213-219 (1996).
  • 5. A. Stoianov, C. Soutar, and A. Graham, "High-speed fingerprint verification using an optical correlator", Optical Engineering 38, 99-107 (1999).
  • 6. K. Chałasińska-Macukow and R. Kotyński, "Correlation methods in optical encription and security", in Perspective in Modem Optics & Optical Instrumentation, pp. 197-193, edited by J.J. Joseph and K. Singh, Anita Publications, New Dehli, 2002.
  • 7. K. Hirokawa, K. Itoh, and Y. Ichioka, "Invariant pattern recognition using neural networks combined with optical wavelet preprocessor," Optical Review (Japan) 7, 284-293 (2000).
  • 8. W. Zhang, K. Itoh, J. Tanida, and Y. Ichioka, "Parallel distributed processing model with local space-invariant interconnection and its optical architecture", Applied Optics 29, 4790-4797 (1990).
  • 9. M. Antkowiak, "Application of optical wavelet transform as a preprocessor for the artificial neural network in biometrics", M.Sc. Thesis, Warsaw University, Warsaw 2002.
  • 10. Y. Li and Y. Sheng, "Wavelets, optics, and pattern recognition", Chapter 3 in Optical Pattern Recognition , edited by F.T.S. Yu and S. Jutamulia, Cambridge University Press, Cambridge, 1998.
  • 11. K. Hirokawa, K. Itoh, and Y. Ichioka, "Real-time optical wavelet-transform with positive and negative signals", Optical Review (Japan) 4, 366-369 (1997).
  • 12. Y. Sheng, D. Roberge and H. Szu, "Optical wavelet transform", Optical Engineering 31, 1840-1845 (1992).
  • 13. K. Hirokawa, K. Itoh, and Y. Ichioka, "Optical wavelet processor by holographic bipolar encoding and joint transform correlation", Applied Optics 36, 1023-1026 (1997).
  • 14. K. Hirokawa, K. Itoh, and Y. Ichioka, "Optical wavelet transform using an LCTV-based joint transform correlator", SPIE's International Technical Group News Letter 11, 6-7 (2000).
  • 15. D. Mendlovic and N. Konforti, "Optical realization of the wavelet transform for two-dimensional objects", Applied Optics 32, 6542-6546 (1993).
  • 16. University of Bologna, Biometrics System Lab. Database DB2_B made available as a part of the Fingerprint Verification Competition, http://bias.csr.unibo.it/fvc2000/Down-loads/DB_B.zip
  • 17. A. Cichocki and R. Unbehauen, "Neural Networks for Optimisation and Signal Processing", John Wiley & Sons, New York, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.