PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient calculations of dispersive properties of phonic crystals using the transmission line matrix method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present an analysis of the accuracy and efficiency of different approaches for the simulation of photonic crystals using the transmission line matrix method. The approaches that we present can be divided into two categories: complex- and real-valued algorithms using a uniform mesh, and complex- and real-valued algorthms using a multigrid mesh. The adventages and disadvantages of each approach are discussed and a brief comparision between these methods is made from the points of view of computqtional expense and accuracy. It is found that a combination of a real-valued method in a multigrid mesh results in the most efficient algorithm. However, while the complex-valued formulation is valid for the analysis of any phonic crystal, the applicability of the real-valued formulation is limited by structural constraints requiring cell symmetries. It is also found that a multigrid approach can considerably reduce the computational cost required for simulating phonic crystals and our results indicate that a good compromise between accuracy and computational cost can be found. Various photonic crystals are simulated by applying these approaches, and the results are validated using alternative methods.
Czasopismo
Rocznik
Strony
139--154
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
  • Carleton University, Departament of Electronics, Ottawa K1S 5B6, ON, Canada
autor
  • Carleton University, Departament of Electronics, Ottawa K1S 5B6, ON, Canada
Bibliografia
  • [1] SAKODA K., Optical Properties of Photonic Crystals, Springer, Germany 2001.
  • [2] JOHNSON S.G., JOANNOOULUS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optics Express 8(3), 2001, pp. 173–190.
  • [3] CHAN C.T., YU Q.L., HO K.M., Order-N spectral method for electromagnetic waves, Physical Review B: Condensed Matter 51(23), 1995, pp. 16635–42.
  • [4] WARD A.J., PENDRY J.B., A program for calculating photonic band structures, Green’s functions and transmission/reflection coefficients using a non-orthogonal FDTD method, Computer Physics Communications 128(3), 2000, pp. 590–621.
  • [5] YAMADA S., WATANABE Y., KATAYAMA Y., COLE J.B., Simulation of optical pulse propagation in a two-dimensional photonic crystal waveguide using a high accuracy finite-difference time-domain algorithm, Journal of Applied Physics 93(4), 2003, pp. 1859–64.
  • [6] THÉVENOT M., REINEIX A., JECKO B., FDTD approach for modelling PBG structures, Journal of Optics A: Pure and Applied Optics 1(4), 1999, pp. 495–500.
  • [7] MEKIS A., FAN S., JOANNOPOULOS J.D., Absorbing Boundary Conditions for FDTD Simulations of Photonic Crystal Waveguides, IEEE Microwave and Guided Wave Letters 9(12), 1999, pp. 502–4.
  • [8] CHUTINAN A., NODA S., Waveguides and waveguide bends in two-dimensional photonic crystal slabs, Physical Review B: Condensed Matter 62(7), 2000, pp. 4488–92.
  • [9] QIU M., AZIZ K., KARLSSON A., SWILLO M., JASKORZYNSKA B., Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals, Physical Review B: Condensed Matter and Materials Physics 64(15), 2001, pp. 155113/1–5.
  • [10] ABU EL-HAIJA A.J., Analysis of the optical properties of thin films using the transmission line method, Optica Applicata 27(2), 1997, pp. 121–41.
  • [11] JACQUIN O., HDAGIJIMANA F., CACHARD A., BENECH P., Application of the TLM technique to integrated optic component modelling, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 14(2), 2001, pp. 95–105.
  • [12] COLLIN R.E., Field Theory of Guided Waves, 2nd Ed., NJ: IEEE Press, Piscataway 1991.
  • [13] CELUCH-MARCYSIAK M., GWAREK W.K., Spatially looped algorithms for time-domain analysis of periodic structures, IEEE Transactions on Microwave Theory and Techniques 43(4), 1995, pp. 860–5.
  • [14] ROMO G., SMY T., Dispersion relation calculation of photonic crystals using the transmission line matrix method, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 17(5), 2004, pp. 451–9.
  • [15] WALTER M., PERTZ O., BEYER A., A contribution to the modeling of longitudinally periodic waveguides by the help of the TLM method, IEEE Transactions on Microwave Theory and Techniques 48(9), 2000, pp. 1574–6.
  • [16] ROMO G., SMY T., Modeling of photonic crystals using a real-valued transmission line matrix method, Journal of Applied Physics 94(4), 2003, pp. 2177–82.
  • [17] WLODARCZYK J., New multigrid interface for the TLM method, Electronics Letters 32(12), 1996, pp. 1111–12.
  • [18] CHRISTOPOULOS C., The Transmission-Line Modeling Method TLM, NJ: IEEE Press, Piscataway 1995.
  • [19] TRENTIK V., CHRISTOPOULOS C., BENSON T.M., Development of a general symmetrical condensed node for the TLM method, IEEE Transactions on Microwave Theory and Techniques 44(12), 1996, pp. 2129–35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0004-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.