PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in MOCVD technology for research, development and mass production of compound semiconductor devices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recent years have seen a continuous transfer of exciting new technologies from basic research institutions to high yield mass production and into our everyday lives. Devices made from novel semiconductor compounds can be found in products ranging from consumer electronics to high speed backbone communication networks. This includes high power infrared laser diodes for glass fiber applications, ultra-high brightness light emitting diodes for display and lighting, high power blue and UV laser diodes for mass storage as well as all types of transistors made from silicon, III-V compounds and silicon-carbide. To facilitate the easy and straigtforward transfer from research scale experimental setups to large area substrates for mass production AIXTRON offers the whole scale of epitaxy solutions from single wafer systems to large scale production machines for up to 95 wafers. The easy configurability of the systems in terms of up-scaling of wafer sizes up to 7x6 inch for phosphides and arsenides and up to 84 inch for nitride materials in concurrence with easy maintenance, high reproducibility and high uniformity across the wafer and from wafer to wafer make the AIXTRON systems the ideal solution for mass production. The growth principle common to all AIXTRON MOCVD systems allows the easy up-scaling of established processes to larger configurations, even from single wafer AIX 200 systems to production type Planetary Reactors®. Add-ons like in-situ monitoring of the growth process by reflectometry (EpiTune® I and EpiTune® II) or Reflectance Anisotropy Spectroscopy (Epi-RAS®) help in a considerable reduction of the development time and costs, hence improving innovation cycles and the time-to-market of novel devices since the growth of the material can be monitored in real time.
Twórcy
autor
Bibliografia
  • 1. ElectroniCast, Compound Semiconductor Magazine 8(2), 26, (2002).
  • 2. According to Investec Inc., Equity Research, July 16, 2002
  • 3. Strategies Unlimited, presented at Strategies in Light 2002, Feb. 6-8, 2002.
  • 4. G. P. Yablonskii, E. V. Lutsenko, V. N. Pavlovskii, I. P. Marko, A. L. Gurskii, V. Z. Zubialevich, O. Schoen, H. Protzmann, M. Luenenbuerger, B. Schineller, and M. Heuken, Phys. Stat. Sol. (a) 188, 79 (2001).
  • 5. G. P. Yablonskii, E. V. Lutsenko, V. N. Pavlovskii, I. P. Marko, A. L. Gurskii, V. Z. Zubialevich, A. V. Mudryi, O. Schön, H. Protzmann, M. Luenenbuerger, B. Schineller, M. Heuken, H. Kalisch, and K. Heime, Appl. Phys. Lett. 79, 1953 (2001).
  • 6. B. Schineller, H. Protzmann, M. Luenenbuerger, G. Gerstenbrandt, M. Heuken, G. P. Yablonskii, A. V. Mudryi, E. V. Lutsenko, V. N. Pavlovskii, and V. Z. Zubialevich, presented at the Inter. Conf. on the Physics of Semicond. (ICPS), Edinburgh, Scotland.
  • 7. B. Schineller, H. Protzmann, M. Luenenbuerger, G. P. Yablonskii, E. V. Lutsenko, V. N. Pavlovskii, V. Z. Zubialevich, M. Heuken, and H. Juergensen, presented at the Inter. Conf. on Nitride Semiconductors 4 (ICNS 4), Denver, Colorado, USA.
  • 8. B. Schineller, H. Protzmann, M. Luenenbuerger, G. Gerstenbrandt, M. Heuken, E. V. Lutsenko, V. N. Pavlovskii, V. Z. Zybialevich, and G. P. Yablonskii, presented at EXMATEC 2002, Budapest, Hungary.
  • 9. J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas, and M. Weyers, J. Crystal Growth 195, 151 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0002-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.