PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Segmentation of spinal cord images by means of watershed and region merging together with inhomogeneity correction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a morphological method for segmentation of high field Mahnetic Resonance (MR) images of the human spinal cord and extraction of the gray matter mask. These images are of low quality and poor contrast. The inhomogeneity of brightness in thr image is usully more pronounced than the difference in brightness between the gray matter and the white matter. Due to this inhomogeneity, it is very hard to use watershed segmentation for automatic extraction of the gray matter, and what remains is manual pointing out of a hundred or more regions belonging to the gray matter. However, as shown in the paper, by using the White Top Hat (WHT) transform with a large structuring element, one can correct the images, significantly reducing the inhomogeneity and approprioriginal image, whereas region statistics used for region merging are calculated from the corrected image. Then the extraction of the gray matter mask is carried out in a semi-automatic way, with the user pointing out the first region belonging to the gray matter area, and the program selecting subsequent neighboring regions based on the statistics of the regions. The method was tested on images coming from different cross-sections of the spinal cord, and the results indicate that the process of extracing the gray matter mask has been significantly speeded up and improved.
Twórcy
  • Institute of Fundamental Technological Research, Warsaw, Poland
  • Electrotechnical Institute, Warsaw, Poland
autor
  • Limburg University Center, Diepenbeek, Belgium
Bibliografia
  • [1] Vincent L., Soille P.: Watersheds iu digital spaces: an efficent algorithm baased immersion simulations. IEEE Trans. on PAMI, 13(6), 583-598. 1991.
  • [2] Dawant B. M., Zijdenbos A. P., Margolin R. A.: Correction of intensity variations in images for computer-aided tissue classification. IEEE Trans. on Medical Imaging, 12(4), 770-781. 1993
  • [3] Vincent L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. on Image Processing, 2(2), 176-201. 1993.
  • [4] Klette R., Zamperoni P.: Handbook of Image Processing Operators. J. Wiley, NY. 1996.
  • [5] Johnston B.; Atkins M. S., Mackiewich B., Anderson M.: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans. on Medical Imaging, 15(2), 154-l69. 1996.
  • [6] Wells III W. M., Grimson W. E., Kikinis R., Jolesz F. A.: Adaptive segmentation of MRI data. IEEE'Trans. on Medical Imaging, 15(4), 429-442. 1996.
  • [7] Nieniewski, M.: Morphological method for detecting defects on the surface of ferrite cores. The 10th Scandinavian Conf. on Image Processing, I, Lappeenranta, June, 323-330. 1997.
  • [8] Heirman P. Serneels R., Vandersteen M.,Gelan J., Beuls E.: On a hybrid watershed-neural network approach for the segmentation of high field MR images of spinal cord. Proc. of the 6 th Int. Conf. on Image Processing and Its Applications, I, Dublin, July, 39O-393. 1997.
  • [9] Rajapakse J. C., Giedd J.N., Rapoport J. L.: Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. on Medical Imaging, 16(2), 176- 186. 1997.
  • [10] Guillemaud R., Brady M.: Estimating the bias field of MR images. IEEE Trans. on Medical Imaging, 16(3), 238-251. 1997.
  • [11] Zana F., Meunier I., Klein J. C.: A Region Merging Algorithm Using Mathematical Morphology: Application to Macula Detection. In: Mathematical Morphology and Its Application to Image and Signal Processing. Henk J. A. M. Heijmans, d Jos B. T. M. Roerdink (Eds.), Kluwer Academic Publishers, Dordrecht, 423-430. 1998.
  • [12] Sled J. G., Zijdenbos A. P., Evans A. C.: A Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. on Medical Imaging, 17(1), 87-97. 1998.
  • [13] Brinkmann B. H., Manduca A., Robb R. A.: Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Trans. on Medical Imaging, 17(2), 161-171. 1998.
  • [14] Soille P.: Morphological Image Analysis. Springer, Berlin. 1999.
  • [15] Pham D. L., Prince J. L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. PRL, 20(1), 57-68. 1999.
  • [16] Pham D. L., Prince J. L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. on Medical Imaging, 18(9), 737-752. 1999.
  • [17] Serneels R., Nieniewski M., Kerre E. E.: Segmentation of Images Using a Simplified Watershed Algorithm. In: Intelligent Techniques and Soft Computing in Nuclear Science and Engineering. DaRuan et al. (Eds.), World Scientific, Singapore, 231-238. 2000.
  • [18] Nieniewski M., Serneels R.: Vision system identification of large dcfects on the surface of ferrite cores. Proc. of the 11 th Portuguese Conf. on Pattern Recognition, Porto, May, 345-352. 2000.
  • [19] Goutsias J., Batman S.: Progress in Medical Image Processing and Analysis. Chapt. 3: Morphological Methods for Biological lmage Analysis. In: Handbook of Medical Imaging. 3, J. M. Fitzpatrick, M. Sonka (Eds.), SPIE Optial Engineering Press, Bellingham, WA, 231-238. 2000.
  • [20] Adiga P. S., Chaudri B. B.: An efficient method based on watershed and rule-based merging for segmentation of 3-D histopathological images. PR, 34(7), 1449-1458. 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0002-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.