PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A neurocomputing approach to the correspondence problem in stereo vision based upon an unsupervised neural network

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stereo matching problem is one of the most widely stidied problems in stereo vision. In this paper we introduce a neurocomputing approach to the local stereo matching problem using edge segments as features with several attributes. Most classical local stereo matching techniques use features representing objects in both images and compute the minimum values of attribute differences. pajares et al ([21]) had verified that the differences in attributes, for the true matches, cluster in a cloud around a center. We used the self-organizing neural network to get the best cluster center. Based on the similarity constraint, we compute the minimum Mahalaobis distances between the differences of the attributes for a new pair of features and the cluster center to classify this new pair as true or false match. Experimental results with two real pairs of images are shown.
Twórcy
autor
  • Mathematics Departmnet, Faculty of Science, Manoura University, Mansoura 35516, Egypt
autor
  • Mathematics Departmnet, Faculty of Science, Manoura University, Mansoura 35516, Egypt
autor
  • Mathematics Departmnet, Faculty of Science, Manoura University, Mansoura 35516, Egypt
Bibliografia
  • [1] Duda R. O., Hart P. E.: Pattern Classification and Scene Analysis, NY, Wiley, 1973.
  • [2] Moravec H. P.: Towards automatic visual obstacle avoidance. Proc. 5th Int. Joint Conf. on AI, 584, 1977.
  • [3] Barnard S. T.. Thompson W. B.: Disparity analysis of images. IEEE Trans. PAMI, PAMI-2(4), 333-340, 1980.
  • [4] Baker H. H., Binford T. O.: Depth from edge and intensity based stereo. Proc. 7th Int. Joint Conf. on AI, Aug., 631-636, 1981.
  • [5] Medioni G., Nevatia R.: Segments-based stereo matching. CVGIP, 31, 2-18, 1985.
  • [6] Otha Y., Kanade T.: Stereo by intra- and inter-scanline search. IEEE Trans. PAMI, PAMI-7(2). 139-154, 1985.
  • [7] Pollard S. B., Mayhew J. E., Frisby J. P.: PMF: A stereo correspondence algorithm using a disparity gradient constraint. Perception 14, 449-470, 1985.
  • [8] Poggio T. A., Torre V., Koch C.: Computational vision and regularization theory. Nature, 317, 314-319, 1985.
  • [9] Horn B. K. P.: Robot Vision. The MIT Press, McGraw-Hill Book Company.
  • [10] Kim Y. C., Aggarwal J. K.: Positioning three-dimensional objects using stereo images. IEEE J. Robotics and Automation, RA-3(4), 361-373, 1987.
  • [11] Bertero M., Poggio T. A., Torre V.: III-posed problems in early vision. Proc. IEEE, 76(8), 869-889, 1988.
  • [12] Kohonen T.: Self-organization Associative Memory. Springer, NY, 1989.
  • [13] Nasrabadi N. M., Choo C. Y. Hopfield network for stereo vision correspondence. IEEE Trans. NN, 3(1), 5-12, 1992.
  • [14] Zhou Y., Chellapa R.: Artificial Neural Networks for Computer Vision. S-V, Berlin, 1992.
  • [15] Maravall D.: Reconocimiento de Formas y Vision Artificial. RAMA, Madrid, 1993.
  • [16] Mousavi M. S., Schalkoff R. J.: ANN implementation of stereo vision using a multi-layer feedback architecture. IEEE Trans. On SMC, 24(8), 1994.
  • [17] Reimann D., Haken H.: Stereo vision by self-organization. Biological Cybernetics, 71, 17-26, 1994.
  • [18] Cruz J. M., Pajares G., Aranda J.: A neural network approach to the stereo vision correspondence problem by unsupervised learning. NN, 8(6), 805-813, 1995.
  • [19] Rogers J.: Object Oriented Neural Network in C++. AP, Inc., 1997.
  • [20] Pajares G., de la Cruz J. M., Lopez-Orozco J. A.: Improving stereo vision matching through supervised learning. Pattern Analysis & Applications, L. 105-120, 1998.
  • [21] Pajares G., de la Cruz J. M., Lopez-Orozco J. A.: Stereo matching using Hebbian learning. IEEE Trans. SMC, 29(4), 553-559, 1999.
  • [22] Fielding G., Kam M.: Weighed matching for dense stereo correspondence. PR, 33, 1511-1524, 2000.
  • [23] Pajares G., de la Cruz J. M., Lopez-Orozco J. A.: Relaxation labeling in stereo image matching. PR, 33, 53-68, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0002-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.