Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Obliczanie MTTR i MTTF złożonych systemów pracujących w sposób ciągły za pomocą metody sumy rozłącznych iloczynów
Języki publikacji
Abstrakty
A binary coherent system for which the repair of faulty components may be performed after system failure only (off-line repair) is considered in the paper. Assuming that the individual component lifetimes are independent and that the system operates continuously, new formulae for computing the MTTR and M l l b of the system are derived. The Sum of Disjoint Product (SDP) methods for simultaneous computation of the MTTR and M Г1F is presented in the paper. The results are illustrated by some examples.
W artykule rozpatruje się dwustanowy system koherentny, którego elementy mogą być naprawiane dopiero po uszkodzenu systemu. Zakładając, że czasy pracy elementów są wzajemnie niezależne oraz że system pracuje w sposób ciągły, otrzymano nowe wzory na obliczanie M1T F i MTTR systemu. Przedstawiono metodę sumy rozłącznych iloczynów do jednoczesnego obliczana MTTR i MTTF systemu. Wyniki pracy zilustrowano przykładami, zarówno prostymi jak i złożonymi.
Słowa kluczowe
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
Bibliografia
- [1] Abraham, J.A.: An improved method for network reliability. IEEE Transactions on Reliability, 1979, Vol.R-28, No.1, pp.58-61.
- [2] Ball M.O., Provan J.S.: Disjoint products and efficient computation of reliability. Operations Research, 1988, Vol.36, No.5, pp.703-715.
- [3] Barlow R.E., Proschan F.: Statistical Theory of Reliability and Life Testing. Probabilistic Models. Holt, Rinehart and Winston: New York, 1975.
- [4] Beichelt F.: Zuverldssigkeit strukturierter Systeme. VEB Verlag Technik: Berlin, 1988.
- [5] Chen S., Xu D., Tong S.: A new algorithm for minimal disjoint sum of products. Microelectronics and Reliability, 1991, Vol.31, No.5, pp.817-822.
- [6] Dohmen K.: Inclusion-exclusion and network reliability. Electronic Journal of Combinatorics, 1998, Vol.5, paper no.36. [Internet: http: //www.combinatorics.org]
- [7] Dotson W.P., Gobien J.O.: A new analysis technique for probabilistic graphs. IEEE Transactions on Circuits and Systems, 1979, Vol.CAS-26, No.10, pp.855-865.
- [8] Höfle-Isphording U.: Zuverlässigkeitsrechnung. Einführung in Ihre Methoden. Springer-Verlag: Berlin, 1978.
- [9] Karpiński J., Korczak E.: Methods of Reliability Evaluation of Two-State Technical Systems. Omnitech Press: Warsaw, 1990 (in Polish).
- [10] Korczak E.: Evaluation of the mean time to repair of a complex technical systems. Prace Przemysłowego Instytutu Telekomunikacji, 1996, Vol.46, Z. 117, pp.1-13 (in Polish).
- [11] Korczak E.: Numerical computation of the MTTF with prescribed accuracy. In: G.I. Schueller & P. Kafka (eds), Safety and Reliability. Proceedings of ESREL ’99 - The Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 13-17 September 1999, Vol.1, pp.55-60. A.A. Balkema: Rotterdam, 1999.
- [12] Korczak E.: Computer program for evaluation of the mean time to failure and the mean time to repair of complex technical systems. Research Report No. 18511/99, B14/205/99, Telecommunications Research Institute, Warsaw, 1999 (in Polish).
- [13] Locks M.O.: Recursive disjoint products, inclusion-exclusion, and min-cut approximations. IEEE Transactions on Reliability, 1980, Vol.R-29, No.5, pp.368-371.
- [14] Locks M.O.: Recursive disjoint products. A review of three algorithms. IEEE Transactions on Reliability, 1982, Vol.R-31, No.1, pp.33-35.
- [15] Locks M.O.: A minimizing algorithm for sum of disjoint products. IEEE Transactions on Reliability, 1987, Vol.R-36, No.4, pp.445-453.
- [16] Locks M.O., Wilson J.M.: Note on disjoint products algorithms. IEEE Transactions on Reliability, 1992, Vol.41, No.1, pp.81-84.
- [17] Reuger W.J.: A memory-effective fast algorithm for computing the reliability of complex systems/networks. Microelectronics and Reliability, 1987, Vol.27, No.2, pp.273-277.
- [18] Ross S.M.: On the calculation of asymptotic system reliability characteristics. In: R.E. Barlow, J.B. Fussel & N.D. Singpurwalla (eds), Reliability and Fault Tree Analysis, pp.331-350. SIAM: Philadelphia, 1975.
- [19] Schneeweiss W.G.: Disjoint Boolean products via Shannon’s expansion. IEEE Transactions on Reliability, 1984, Vol.R-33, No.4, pp.329-332.
- [20] Schneeweiss W.G.: Fault-tree analysis using a binary decision tree. IEEE Transactions on Reliability, 1985, Vol.R-34, No.5, pp.453-457.
- [21] Schneeweiss W.G.: Boolean Functions with Engineering Applications and Computer Programs. Springer-Verlag: Berlin, 1989.
- [22] Shi D.H.: General formulas for calculating the steady-state frequency of system failure. IEEE Transactions on Reliability, 1981, Vol.R-30, No.5, pp.444-447.
- [23] Singh B.: A procedure for generating sum of disjoint products. Microelectronics and Reliability, 1993, Vol.33, No.15, pp.2269-2272.
- [24] Sproß L.: Erzeugung von Orthogonalformen der Strukturfunktion binaren monotoner Systeme. Nachrichtechnik Elektronik, 1987, Vol.37, No.9, pp.338-339.
- [25] Veeraraghavan M., Trivedi K.S.: An improved algorithm for symbolic reliability analysis. IEEE Transactions on Reliability, 1991, Vol.40, No.3, pp.347-358.
- [26] Wilson J.M.: An improved minimizing algorithm for sum of disjoint products. IEEE Transactions on Reliability, 1990, Vol.39, No.1, pp.42-45.
- [27] Xu W., Shi D., Chen H.: General algorithm for calculating system reliability. Microelectronics and Reliability, 1987, Vol.27, No.3, pp.413-418.
- [28] Yoo Y.B., Deo N.: A comparison of algorithms for terminal-pair reliability. IEEE Transactions on Reliability, 1988, Vol.37, No.2, pp.210-215. Correction: No.3, p.279.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0001-0680