
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 19

Software Reliability Growth Models

R. PEŁKA
radoslaw.pelka@wat.edu.pl

Faculty of Cybernetics, Military University of Technology

Kaliskiego Str. 2, 00-908 Warsaw

History of research on reliability of software began in the early seventies of the last century. A significant
progress of the work aimed at the construction of a mathematical model of software reliability growth has been
performed since the first publication devoted to this subject was presented. Analysis of existing literature may
lead to the conclusion that there is no universal solution which could be applied in every single case. However,
it is possible to classify existing models, based on their characteristics such as data domain, the way to describe
faults discovered during testing process, the way to express reliability, or other remaining assumptions,
including mathematical concepts used in the evaluation process. This article presents an overview of existing
solutions related to software reliability modelling, focusing on variety of aspects and methods used within this
process.

Keywords: modelling, software, software reliability.

1. Introduction

History of research on the reliability of software
began in the early seventies of the last century.
Pioneers of the new idea were Jelinski together
with Moranda, Shooman and Coutinho, who
published results of their work devoted to
the subject. In those papers, authors aimed at
constructing a mathematical model, which has
the ability, based on collected test data, to
predict future reliability of software under
analysis. Reliability, according to the
IEEE/ANSI 982.2 standard, is defined as the
probability of fault free program execution in
defined time period and runtime environment.
It is one of the most important features that
software may be characterised. Nowadays, it is
even perceived as a key value affecting customer
satisfaction, in addition to other important
factors, such as functionality or performance.

From the moment when first publications
concerning software reliability modelling
and analysis were presented, plenty of new
papers presenting an entirely new approach to
the subject or modifying existing solutions have
been prepared. However, it is still not possible to
select one particular model, which could be
treated as an universal one, applicable in every
single case. It is a consequence of not being
universal assumptions taken for model
construction. Due to this fact, it is required to
select the most suitable solution, basing on
specific aspects of software under analysis and
runtime environment conditions. It is not an easy

task. It often requires many time-consuming
trials that lead to proper model selection and
estimation of its parameters.

2. Background Information

Reliability growth models can be divided into
two main groups. Models from the first group
introduce metrics for reliability estimation, such
as the number of code lines, nested loops,
external references or the number of inputs and
outputs, that describe the source code. In the
second group there are models, which are built
on the basis of statistical correlations between
data concerning discovered faults and known
functions, e.g. exponential function. When such
correlations are found, the known function
characteristics are used for software behaviour
prediction in the future. For this reason also,
these kinds of models are called reliability
growth models. This approach is much more
popular within researchers.

Taking into account the domain, on which
software reliability growth models operate, two
categories can be specified. Time domain
models constitute the widest and also most
popular group. In these models reliability,
associated with fault intensity, is defined as
a function of time. Data domain models
constitute the second category. In these models
reliability, in turn, is a function of the program
execution for defined input data and describes
the number of successful executions in relation
to the total number of tries. Researchers pay

R. Pełka, Software Reliability Growth Models

 20

more attention to time domain models. It is
worth mentioning that from the perspective of
software reliability, three different models of
time can be distinguished:
• execution time – time, which the central

processing unit (CPU) spends on program
execution

• calendar time – time in general (hours,
days, weeks, months, years)

• clock time – time, which elapses from
the moment of program start, excluding
periods when hardware, for instance,
is turned off.

The calendar time was initially the only

choice made for the proposed models. This fact
was put into question by Musa. It turned out that
the application of the execution time instead,
resulted in the simplification of models and
allowed obtaining better results. The superiority
of one approach over the other was also proved
by Trachtenberg (1985), Musa and Okumoto
(1984) and Hecht (1981) in their publications.
Nevertheless, there are models where the
calendar time is used or the time definition is not
explicitly specified. In 1987 Musa described
how results received from modelling can be
converted depending on different time
definitions.

Software reliability growth models define,
in general terms, the relation between
occurrences of program failures and main factors
that have influence on that process. Such factors
can be, for instance, fault introduction, fault
removal or properties of runtime environment.
The main idea behind software reliability
modelling is to reflect such a relationship that
the number of failures in a time interval
decreases or time between consecutive failures
increases while faults detection and the removal
process proceeds. This is the dependency that
every model must take into account. When it is
done, statistical methods allow prediction of
future behaviours of the process. This kind of
knowledge may be used in two different ways.
Firstly, it can be an indication for additional time
needed to obtain a required reliability level.
Secondly, it can be used to determine a future
reliability level, at the end of the tests phase,
when the current fault detection rate is sustained.
By having such information it is possible to
verify current test plans and introduce required
modifications in order to achieve the intended
goal. So, it is possible to estimate the current
situation and take proper action.

All measurements, which are made to
determine the software reliability involve two

concepts: estimation of reliability coefficients
and prediction of reliability characteristics.
The former determine the current reliability on
historical data basis, using statistical methods.
The data describe failures from the test phase or
past software utilization. The main reason for
these kind of calculations is to obtain the current
reliability level and to check, if the reliability
growth model properly reflects the failure
history – whether it has been well-chosen and
well-calibrated. Functions, which characterize
failure occurrence in software utilization, can be
divided according to the way of how they
represent these failures:
• mean value function – determines expected,

overall number of failures for each moment
of time

• failure intensity function – determines rate
of mean value function changes

• hazard function – determines probability of
failure in time interval [t, t + Dt] when there
was no failure before t (time expressed in
particular units)

• mean time to failure (MTTF) function –
determines expected time when the failure
occurs; MTTF is also known as mean time
between faults (MTBF).

Time domain models can be divided into

two classes, according to data types they use:
• models, where cumulative number of

failures in a time interval is important,
• models, where time between consecutive

failures is important.

Despite the fact that these approaches are
different, they do not create a permanent
division, because there are methods to convert
a failure description from one form to another.
This gives a chance to use the specified model
when we initially do not have data expressed in
the required way.

Function, which maps failures history over
time can be a concave or s-shaped function.
In the latter case, there is an assumption taken
that in the beginning of the test process, we are
dealing with a learning period, when faults
detection rate is much lower than in later phases.
Discarding this period of time, functions of both
types are similar, which means that the faults
detection rate decreases along with the growing
number of totally occurred failures (the software
becomes more reliable). An asymptote of such
graph might be a line, which corresponds to the
total number of faults in the program.

A reliability model is a function described
by parameters. These parameters must be

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 21

estimated on a test data basis. Estimation can be
done by inserting test data into equations, where
wanted parameters exist. The most popular
direct method like that is the maximal likelihood
method. The indirect method assumes matching
test data with the shape of a function and
estimation of the parameters through a best fit to
the curve. The least squares method is the
leading one here. The maximal likelihood
method may be very complex because the set of
many equations is produced and must be solved.

In 1983 Musa and Okumoto proposed
models categorization based on their attributes:
• way to represent time – calendar or

execution time
• total number of faults that may appear in an

infinite period of time – finite or infinite
• failures distribution in particular time – two

most important are Poisson and binominal
distributions

• shape of failure intensity function.
The Poisson and binominal distributions

play the key role for software reliability growth
models classification. The non-homogeneous
Poisson process application became the most
useful and practical choice for software
reliability modelling. This fact come from many
experiences. Models based on binominal
distribution are finite number of faults type
models, which means they assume that a finite
number of failures occur in an infinite time. On
the other hand, models based on the Poisson
distribution can be developed both as a finite or
theoretically infinite number of faults models.

Many models base on the Markov process
theory. Within this category we can give
examples, grouped according to failure
occurrence distribution:
a) poisson distribution:

• Crow (1974)
• Musa (1975)
• Moranda (1975, 1979)
• Schneidewind (1975)
• Goel and Okumoto (1979)
• Brooks and Motley (1980)
• Angus (1980)
• Yamada et al (1983, 1984)
• Yamada and Osaki (1984)
• Ohba (1984)

b) binominal distribution:
• Jelinski and Moranda (1972)
• Shooman (1972)
• Schick and Wolverton (1973, 1978)
• Wagoner (1973)
• Goel (1988)
• Shanthikumar (1981)
• Littlewood (1981)

c) other distribution type:
• Shooman and Trivedi (1975)
• Kim et al (1982)
• Kremer (1983)
• Laprie (1984)
• Shanthikumar and Sumita (1986).

The most popular in literature and playing

a key role in studies in the software reliability
field are exponential models. According to the
Musa–Okumoto classification, this group
consists of all finite failure models, where the
failure intensity function is expressed as
exponential. Models with binominal distribution
from this category can be characterized by the
fact that the hazard function (zT(t) = F) is
constant in relation to a single fault and it
depends on number of faults remaining in
the program ()()1−− iN . The failure intensity
function is exponential () ()()ftfNt −⋅= exp1 .
Models with the Poisson distribution from this
category can be also characterized by the fact
that the hazard function (zT(t) = f) is constant
in relation to a single fault and that time
to failure caused by such a fault has
an exponential form () ()()fxfNxfx −⋅= exp .
Both for homogeneous and non-homogeneous
Poisson processes, the number of failures that
occur in any, defined time interval, is a random
variable with the Poisson distribution. For
models where time between consecutive failures
is crucial, an exponential distribution is used.

In the first software reliability models
developed by Jelinski and Moranda or Shooman,
time between consecutive failures is described
by the exponential distribution with the
parameter, which is proportional to the number
of faults remaining in the program, e.g. a mean
time between failures for t is ()()1/1 −− iNf ,
where t is any moment in time between 1−i and
i-th failure occurrence, f is a proportionality
coefficient and N expresses the total number of
faults in the software, when analysis was started.
When a failure occurs, then the hazard function
value decreases by the f − constant value. This
fact shows that each fault removal has the same
influence on the overall software reliability.
In the Musa–Okumoto classification, it is
a model of binominal type. In such models the
following assumptions are taken:
• all faults existing in the software have an

equal influence on the overall reliability.
Due to this, in every moment of time,
failure intensity is proportional to the
number of faults remaining in the program

R. Pełka, Software Reliability Growth Models

 22

• failure rate is constant between consecutive
failure occurrences

• fault detection is an equivalent to fault
removal and it is not possible to introduce
a secondary fault at the same occasion

• software under analysis will be utilized in
similar conditions to these, where reliability
estimation is done

• each fault has the same probability of
occurrence and has the same negative
impact on the program, as other errors

• failures are independent off each other.

The last three assumptions are common for

other basic models. Examples of models, that
apart from the notation, are either identical or are
very close approximations of the exponential
model, can be models developed by Musa
(1975), Schneidewind (1975) or Goel
and Okumoto (1979).

Another type of models are models using
the Bayesian theory. These models differ
substantially in terms of certain deterministic
findings when compared to models with the
Markovian and exponential approach. For
instance, in the exponential approach it is
assumed, in most cases, that each single fault
belongs to one, common severity class and has
the same influence on the failure intensity
function. The Bayesian approach, however,
contests this assumption and says that the fault
significance should be adjustable by a certain
coefficient in the model (Littlewood, 1981).
Previously mentioned models use also the
assumption, that any change in reliability
estimation shall be done only when a failure
occurs. The Bayesian theory introduces
a subjective point of view, e.g. in the case when
there is no failure at some period of testing, it is
allowed to grow one's belief about program
correctness and adjust the software reliability
estimation accordingly. Therefore, it can be
concluded that reliability is the function of both
the number of faults detected and the fault-free
periods.

In accordance with the belief that different
faults have different impact on program
reliability, the total number of faults is not so
important as their severity is. Such an approach
seems to be more adequate from a practical point
of view. If there is, for instance, a program, in
which few faults are placed in a rarely executed
part of code and some other program, in which
there is only one fault, but placed in a very often
used part of code, then according to the Bayesian
theory it is not true to say that the latter program
is more reliable than the first one. More

important is to look at the entire operation of
the code, rather than estimating the total number
of faults contained therein. Due to this fact,
the mean time to failure (MTTF) value became
a very important statistic in this approach. Other
unique attribute of this technique is the use of
historical data from previous, similar projects to
estimate reliability of the current software. It is
automatically a significant difficulty to use such
data in a smart way. The Littlewood–Verrall
(1973, 1974) proposal is probably the best
example of solution within this class. This model
makes an assumption that the program under
testing may become less reliable during the
evaluation than it was before. Due to uncertainty
of perfect fault removal after each failure, it is
possible that the new version can be either better
or worse than the previous one. It is reflected in
such way that parameters, which define failure
distribution over a period of time are selected
randomly. The failures, as in the previously
described models, are exponentially distributed
with known failure intensity, but here the
intensity is random, not constant as before.
Distribution of the intensity on the basis of
historical data, may be a gamma distribution.
Variations of such models are models presented
by Mazzuchi and Soyer (1988), Musa (1984) or
Keiller et al (1983).

Every conventional model may become
a Bayesian model, if at least one of its
parameters, will be assigned a proper
distribution. Most of the models with the
Bayesian theory use an exponential model as
a starting point, for example Littlewood and
Verrall (1974), Goel (1977), Littlewood (1980),
Jewell (1985), Langberg and Singpurwalla
(1985), Littlewood and Sofer (1987), Becker and
Camarinopoulos (1990) or Csenki (1990). There
are also completely new models, like Littlewood
and Verrall (1973), Thompson and Chelson
(1980), Kyparisi and Singpurwalla (1984) or Liu
(1987). The main problem with such models is
their complexity and difficulty of correct
distribution choice for parameters. What is more,
most of the software designers have not enough
knowledge of statistics to fully understand and
use such models. Conventional models are far
more often used in practice. What is common for
many conventional and Bayesian models is the
idea that early fault correction have a bigger
influence on failure intensity than those
corrections made during later phases.

As it was mentioned before, proper model
selection for existing test data is not an obvious
and easy task. Different models may give
different predictions, basing on the same failure

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 23

data. It is not a unique phenomenon, typical for
software reliability growth models, but it can be
observed also in other models, where some
changeable in time values are evaluated. What is
more, one model may give reasonable results for
one failure data set and controversial for other.
Searching for the best model of software
reliability began in the late 70s and early 80s of
the last century. Initial efforts devoted to model
comparison, conducted by Schick
and Wolverton (1978), also Sukert (1979), did
not bring expected results. Basically,
the problem was in the lack of proper basis of
failure history and overall acceptance on
common criteria, which should be used for such
purposes. The former deficiency was
complemented successively, with a major
contribution of Lyu, who in 1996 published fifty
useful sets of failure history. These sets were
created under special surveillance and represent
data related to various applications such as real
time command and control systems, commercial
systems or military and space systems. A kind of
consensus in comparative criteria selection was
presented by Iannino et al. In 1984 they
proposed the following criteria:
• Usefulness of the model for failure

prediction, basing on known or assumed
software characteristics, such as code
metrics estimation or failure history.

• Usefulness of the model for precise
estimation of indicators for planning
and maintaining of software development
during a project or operation. These
indicators can be, for example, current
failure intensity, the time when failure
intensity reaches a desirable level, amount
of resources and cost required to reach
a desirable failure intensity.

• Quality of model assumptions, for instance,
data availability, clarity and precision.

• Usefulness of the model for the software,
which differs in terms of size, structure,
function, runtime environment and software
development life time phase.

• Model simplicity, for instance, simplicity of
used concepts, or simple and inexpensive
way to collect data, or implementation in
terms of software utility.

Introduction of such categorization, based

on proposed criteria, in some extent may restrict
the scope of models suitable for application.
Nevertheless, there are many aspects that may
have influence on the process of failure
occurrence and which are not taken into
consideration by any of the models. The best

recommended method of model selection is to
examine various possibilities for the same failure
data set. Due to the fact that such a process is
very time consuming, it has more sense with the
help of tools, such as CASRE, SMERFS, SRMP
or SREPT, developed to support user in software
reliability estimation.

3. Software Reliability Modelling

Concept Evolution

The theory of software reliability modelling has
been a subject of continuous development over
the years. New and various proposals have
appeared. They suggest how existing solutions
may be enhanced or how new ideas may lead to
satisfactory results. The recalibration concept
(Abdel-Ghaly and others, 1986), in other words
an adaptive prediction, would lead to better
results. It is a statistical procedure, which allow
model parameters adjustment according to
previous failures and, in consequence, giving
better predictions – reducing the level of model
“corruption”. Another idea is a linear
combination of models (Lyu i Nikora, 1991,
1992), which, even in the easiest form, is
capable of giving more adequate predictions
than one, single model. An early prediction
model based on phases (Gaffney i Davis (1988))
suggests the use of fault statistics prepared
during technical reviews of project requirements
or code development and implementation, to
reliability prediction for the test phase and future
operation. One of the first and well known
attempts of software reliability prediction in the
early development phase was the method
proposed by researchers working for Rome Air
Development Center (1987). For their model,
they developed a method of fault density
prediction, what might be later transformed into
other types of reliability measurements, like
failure intensity. In another model proposed by
Kapur and Garg (1992), dependencies between
faults in the fault removal process are taken into
consideration.

Reliability growth theory for modelling
uses only data related to failures from the system
under investigation, while its structure is
ignored. A closer look at the system architecture
became more interesting when the component-
-based production became more popular.
Evolution of network technologies favoured
development of distributed systems. Moreover,
the use of object-oriented programming
languages, helped logical function separation,
what together caused that the modularity
philosophy in software engineering became the

R. Pełka, Software Reliability Growth Models

 24

most popular approach. The essential meaning is
fact that in the system under investigation only
part of the components have been modified or
written from scratch, and the rest of the
components remained unchanged. The first
model taking into account modularity was the
model developed by Littlewood (1979). This
idea was further promoted. Smidts and Sova
(1999) considered modelling, which for software
reliability prediction takes into account the
system architecture, based on the requirement
decomposition to functions and attributes of the
program.

Kuball et al (1999) introduced a hierarchical
model with the Bayesian theory for the failure
probability prediction of the system based on the
components. Lyu et al (2002) formulated
the resource requirements for the testing phase
of the software based on components as
a combinatorial optimization problem with
known costs, reliability, incurred effort and other
attributes of components. Another papers related
to this topic were presented by Kubat (1989),
Gokhale (1998), Ledoux (1999), Yamada (2000)
or Okamura (2004). Summarizing the
introduction of structural parameters into the
reliability engineering process gave other
opportunities for evolution.

The software reliability model
parameterization may also be based on
alternative origins of information, such as
metrics developed by early prediction models.
Other kinds of metrics may concern test cases
coverage or system load. Piwowarski et al
(1993) proposed a simple software reliability
growth model based on test cases coverage
application. Malaiya et al (1994) presented
a logarithmic model where test team effort is
taken into account in relation to test specification
coverage, what may have direct influence on
coverage of defects present in a program and so
the increase of its reliability. Chen et al (2001)
included test coverage into modelling by
reference to the time of their execution. Fujiwara
and Yamada (2001) proposed a model that
includes the characteristic of prepared sets of
system tests. In particular, it refers to skills
and knowledge of testers who prepare test cases.
Longer experience leads to the extension of the
fault scope that potentially may be discovered
with use of a selected test case group. It is worth
mentioning that in accordance with software
reliability engineering assumptions, test ceases
should be prepared so that they reflect the
operational profile of the investigated system.
The operational profile is defined as a set of
software operations, together with the

probability of their occurrence. An operation is
a set of calls which, in most cases, requires
similar computing.

A test case coverage aspect is related with
modelling taking into account code coverage.
The coverage is understood here as an execution
of selected instructions of the program or
passing functional paths at least once. Such
information is further combined with the failure
data. Models introducing such an idea were
presented by Fujiwara and Yamada (2002),
Malaiya (2002), Pham and Zhang (2003) or
Inoue and Yamada (2004).

Another approach is modelling quality
metrics (dependent variables) on the basis of
their relationship with other, independent
variables, such as code size, data size, code
complexity, operators, operands etc. They are
later used for predictions of software reliability
and quality. Agresti and Evanco (1992)
attempted to create a model for fault density
prediction on the basis of characteristics from
the development process for the Ada language.
Gokhale and Lyu (1997) used a regression tree
analysis technique for relationships
establishment between dependent and
independent variables. Schneidewind (2000)
developed a method for software examination
giving the ability to recognize, which modules
are fault-prone and which are not. This
information may be used for quality controlling
purposes and future maintenance. Another
example is the use of data in terms of cyclomatic
complexity of the code, or number of code lines,
in connection with fault data. This idea was used
for reliability prediction of software prepared for
satellite control (NASA JM1) by NASA. The
model used for that analysis was described by
Schneidewind (2008).

An interesting area for scientific researches
devoted to software reliability estimation are
also simulation techniques. Von Mayrhauser et
al (1993) conducted an experiment to verify
the nature of relations between program faults
and its structure and they proposed a technique
for reliability prediction. Tausworthe and Lyu
(1996) proved that the Monte Carlo simulation
technique is useful for software reliability
prediction. They established a simulation
technique allowing the modelling of a complete
cycle of software development, including fault
and failures life time cycle. Gokhale et al (1998)
enhanced this technique further for reliability
analysis of systems based on components, for
various architectures and configurations.

The simplest assumption of research on
the process of faults detection and removal is

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 25

that the similar scale of effort and test strategy
are required for various faults detection.
Practically, this might be untrue. To reflect that
differentiation, faults might be classified into
separate categories, each group of faults of
different complexity. In this way, fault detection
and removal rate of different categories vary. In
the modified exponential model Yamada (1983)
assumed two categories of faults. Pham (1993)
proposed a model with many types of faults.
Kapur (1995) also introduced such assumptions
into his model, where time between failures and
time required for fault removal is dependent on
fault category. The same author, in another paper
(2000), proposed the classification of faults to
different categories based on the time of
a particular fault detection. Another issue is
whether the fault detection rate should remain
constant throughout the testing process. It turns
out that many factors, such as test strategy,
changes in a testing environment or in test team
personnel assignments, including tester
motivation, have direct impact on faults
detection and removal process. Any deviation
may be analyzed using the concept of testing
time division into intervals, where during each
interval test strategy and environment remain,
more or less, unchanged and differ from other
intervals. The fault detection rate (alternatively
fault removal rate) in such an interval is constant
or is a function of testing time and differs from
analogous quantities in other intervals. This
concept was initiated by Zhao (1993), and later
developed by other authors: Chang (2001), Chen
(2001), Shyur (2003), Zou (2003), Kapur (2006)
and Gupta (2008). Examples of other models
introducing modifiable level of testing effort are
models proposed by Yamada (1991, 1993),
Bokhari (2006), Kapur (2004), Kuo (2001) or
Huang (2007).

Moving away from a total number of faults,
as an indicator of software reliability, was
proposed by Sawada and Sandoh (1999).
According to their vision, testing of software is
concluded as a series of demonstrative tests
where information about the number of revealed
faults and their negative impacts on software is
collected. It is a sort of prototype testing when
functionality of the code grows from stage to
stage. Before each presentation, a fixed limit of
faults and their consequences is assumed
and according to received results, the decision
about prototype acceptance is taken. Some
additional figures related to risk level of the
vendor and of the customer are also calculated
by applying statistical analysis. The concept
proposed by Japanese researchers is useful,

especially from the perspective of new
techniques of software development.
An example could be the SCRUM, where each
stage, called a sprint, aim to produce complete,
up to some point, program version, which may
be presented to a customer.

For typical software reliability growth
models, failure history, collected in past test
phases, is very important. This information
might not be representative due to changes in the
test environment, differentiated test strategy etc.
Xie, Hong and Wohlin (1997) presented
a method of ”exponential smoothing”
a technique application for reliability prediction.
In their approach, much higher importance for
estimations is the current information. This
allows elimination of negative influence of the
premature test phase, when the system is not
stable yet. Additional advantages of this model
are intuitive parameters and low requirements on
time consuming calculations.

Typical reliability growth models are used
for failure process modelling under the
assumption, that fault removal is immediate and
reliable, which means that imperfect fault
correction and new faults introduction is not
taken into account. Such an assumption is far
away from reality when it comes to software
development. That is why researchers started to
look into this phenomenon, introducing elements
of faulty correction. Initiators of the idea of
imperfect debugging were Goel (1985) and
Kapur with Garg (1990). Initiators, who
introduced fault generation (perfect fault
correction but, at the same time introducing new
faults) were Ohba and Chou (1989). Later, this
approach was further developed by Yamada
(1992), Kapur (1996), Pham (2000, 2006),
Shneidewind (2001), Shyur (2003) or Chatterjee
(2004). In practice, there are two reasons of
imperfect debugging. First, it is the impossibility
of perfect fault removal, because a mistake
probability always exists (Goel-Okumoto –
1979, Yamada – 1993). Second, by analogy, it is
the introduction of new faults, because it is
likely to happen. It can also be assumed, that the
total number of program faults is an increasing
function of time (Ohba-Chou – 1989, Yamada –
1992, Pham-Zhang – 1997). There are examples
of researches linking both reasons mentioned
above (Zeephongsekul – 1994, Pham – 1995).
Time and effect analysis related to debugging
creates another process. In this case, the model
should take into account data from fault
detection and fault removal process. The process
of fault removal can be regarded as
a delayed process of fault detection, since the

R. Pełka, Software Reliability Growth Models

 26

fault can be fixed only after its detection, so it
can be e.g. the non-homogeneous Poisson
process. The delay reflects a time required for
fault correction, which can be a constant or
random value.

Models, which assume a probabilistic
character of the fault detection process were
criticized by Cai (1991). He claimed, that
software uniqueness should determine
applicability of fuzzy logic for reliability
modelling, because such a process is fuzzy due
to its nature. The argument for this theory is that
a debugging process cannot be recurrent in terms
of probability theory and none, even large, set of
samples does not guarantee possessing enough
amount of information for good prediction. The
model introducing this new approach, the model
of Cai-Wen-Zhang, was proposed in 1993
Elements of fuzzy sets theory were used later
also by Utkin and Gurov (2002). They also take
into account the imperfect debugging and
removal of faults, which are related. Cai, in
another of his papers (2006), put into question
the non-homogeneous Poisson process (NHPP)
applicability as a method for fault detection
process description. In the case when
applicability of Poisson process is assumed, the
expected value and variance of the number of
failures up to time t are equal, according to
Poisson distribution properties. Cai presented
results from the experiment conducted on
software with known number of faults. It turned
out that the estimation for the expected value
and variance were far different, what can be
regarded as proof against assumption about
NHPP applicability. In the same paper the
Markovian approach, used almost as often as
Poisson theory, was also criticized. According to
this approach, passing between two consecutive
states during program execution, where in case
of reliability analysis the transition is done at the
moment of failure, is a Markov process
realization. On an experiment basis, some gaps
in this hypothesis were found. Revealed
inaccuracies do not cause the need for
abandoning of a popular techniques, but it only
show, that described techniques do not have
a universal character.

In models using NHPP, the failure intensity
function is a continuous function of time.
The general argument for NHPP applicability is
its simplicity. The main information here is an
expected value of software failures. Continuity
assumption is unreal, because the debugging
process causes time gaps. Moreover, software is
not wearing out, so when it is not modified, then
its failure susceptibility does not change. That is

why failure intensity for periods between
consecutive debugging sessions should be
constant. Imperfection of models with finite
number of faults and the non-homogeneous
Poisson process theory features for some failure
data sets, resulted in the need for finding models
with some other theory application. That was
the background for, inter alia, models using
loglogistic (Gokhale and Trivedi), or
hypergeometrical distribution (Hou – 1995,
Tohma – 1989).

Another emerging element in
the construction of software reliability growth
models are neural networks. The first, who
introduced this idea was Karunanithi (1991).
Later, other researching results on the same field
were presented by Khoshgoftar (1992, 1993,
1996), Guo and Lyu (2000), Cai (2001), Tiang
(2004), Su (2005, 2007) or Kapur (2008). Neural
network models were used to determine software
quality attributes, such as reliability, or to detect
fault-prone code. Some authors also introduced
in their research fault severity classes or
imperfect debugging and they also applied
various architecture of the neural network.
A neural network has the capability to give
realistic results, basing on sophisticated and not
precise input information. It is a perfect
mechanism for failure process analysis,
especially when simplifying assumptions are
eliminated and the process becomes unintuitive
for human perception. Experience showed that
this is a good alternative for typical parametric
models.

Markovian models were created on the
basis of the assumption that detection of a new
fault during the debugging session is dependent
on the current software state. Previous states,
related to already detected faults, may not be
taken into account, so it is a memory-less
process. Various assumptions taken for model
parameters led to different models development:
Jeliński-Moranda (1972), Moranda (1979),
Littlewood-Verral (1973) or Gaudion (1994,
1999). Reliability related figures usually concern
consecutive times between failures or
cumulative numbers of failures in a particular
moment. The information, whether the fault
correction took place just after fault detection or
if correction was trivial or complex, is usually
not mentioned, while it might be a useful input
for the reliability modelling process. This point
of view is adapted in models where theory of
hidden Markov models is used, e.g. the model
proposed by Durand and Gaudoin (2003, 2005).

A relatively new approach is the use of the
mixed Poisson distribution for software

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 27

reliability modelling. In general, well known
models with NHPP theory (Goel-Okumoto,
Yamada, Ohba-Osaki) are based on stochastic
counting processes, describing defects
discovered during the test phase. However, the
debugging process is not so simple to describe it
in such way, due to the fact of fault
dependencies. In this context, Markovian
processes are an alternative, but from
the standpoint of statistical calculations, it is
a real disadvantage. The modified NHPP model
might give better results.

4. Summary

Software reliability growth models are generally
used for establishing the current reliability and
predicting future reliability of software.
Information obtained from software reliability
modelling might be useful for many cases where
decision related to cost analysis, resource
allocation or release date, must be taken during
software development phases. Among
techniques having the greatest influence on
software reliability modelling, the non-
homogeneous Poisson process should be
highlighted as the one playing an important role.
Especially the model created by Goel and
Okumoto (1979) must be mentioned here. Some
researches proved that models with simple
implementation can be as good as those, which
are complex, and which include many important,
additional aspects.

Today some opinions are that reliability
growth models developed at the time when the
waterfall philosophy was the dominated one in
software development, are not so useful for new,
agile techniques. It is caused by the fact that it is
difficult in the estimation of model parameters,
mainly due to lack of suitable data.

A natural conclusion from observing the
reliability growth during the testing phase is that
the longer the software is being tested the better
the quality can be assured. However,
overzealous testing is pointless, because it
causes project costs to grow and postpones the
moment of product release. Short time-to-market
is a very important indicator for customers
today. In dynamically changing conditions and
needs of the market, producing even the most
reliable software, but not following scheduled
time frames, is not worth spending money,
because customers start to locate their point of
interest somewhere else. It is a big challenge for
software production companies, where, for
instance, old processes of development must be
replaced by new processes that reflect the

current market requirements more. On the other
hand, releasing software with major faults
in functionality, which are discovered too late,
because in the customer environment, is
a serious loss for company. Such faults are much
more expensive because, apart from money, they
lower the level of trust in the vendor and spoil
company’s reputation. It is difficult to make the
correct decision on the time of software release
and its readiness for the market. Researches
devoted to the optimal release time problem
were conducted by Yamada (1985), Brown
(1989), Ohtera and Yamada (1990), Ehrlich
(1993), Hou (1997), Pham (1999, 2004),
Rinsaka (2004) or Huang (2006).

In conclusion, it is worth mentioning
a quote of one statistician, who had a significant
contribution to reliability analysis. George E.P.
Box once said that "Generally, all models are
wrong, but some of them are useful."

5. Bibliography

[1] M.R. Lyu, ”Handbook of software

reliability”, IEEE computer society press,
(1996).

[2] Ch.H. Lee, Y.T. Kim, D.H. Park, ”S-shaped
software reliability growth models derived
from stochastic differential equations”,
IIE transactions, (2004).

[3] K-Y. Cai, ”Software Reliability
Experimentation and Control”, J. Comput.
Sci. & Technol., (2006).

[4] W. Everett, S. Keene, A. Nikora, ”Applying
Software Reliability Engineering in
the 1990s”, IEEE Transactions on
Reliability, (1998).

[5] P.K. Kapur, A. Kumar, K. Yadav,
S.K. Khatri, ”Software reliability growth
modelling for errors of different severity
using change point”, International Journal
of Reliability, Quality and Safety
Engineering, (2007).

[6] K. Sawada, H. Sandoh, ”Software
Reliability Demonstration Testing
with Consideration of Damage Size of
Software Failures”, Electronics
and Communications in Japan, (1999).

[7] M. Xie, G.Y. Hong, C. Wohlin, ”A study of
the exponential smoothing technique in
software reliability growth prediction”,
Quality and Reliability Engineering
International, (1997).

[8] M. Xie, Q.P. Hu, Y.P. Wu, S.H. Ng,
”A Study of the Modeling and Analysis of
Software Fault-detection and Fault-
correction Processes”, Quality

R. Pełka, Software Reliability Growth Models

 28

and Reliability Engineering International,
(2007).

[9] L.V. Utkin, S.V. Gurov, ”A fuzzy software
reliability model with multiple-error
introduction and removal”, International
Journal of Reliability, Quality and Safety
Engineering, (2002).

[10] A. Yadav, R.A. Khan, ”Critical Review on
Software Reliability Models”, International
Journal of Recent Trends in Engineering,
(2009).

[11] S. Yamada, K. Sera, ”Imperfect Debugging
Models with Two Kinds of Software
Hazard Rate and Their Bayesian
Formulation”, Electronics
and Communications in Japan, (2001).

[12] S. Yamada, ”Software Reliability Growth
Models Incorporating Imperfect Debugging
with Introduced Faults”, Electronics
and Communications in Japan, (1998).

[13] J-Y. Park, ”Integration of imperfect
debugging in general testing-domain
dependent NHPP SRGM”, International
Journal of Reliability, Quality and Safety
Engineering, (2005).

[14] P. Zeephongsekul, W. Bodhisuwan,
”On a generalized dual process software
reliability growth model”, International
Journal of Reliability, Quality and Safety
Engineering, (1999).

[15] K. Esaki, M. Takahashi, ”A model for
program error prediction based on testing
characteristics and its evaluation”,
International Journal of Reliability, Quality
and Safety Engineering, (1999).

[16] P.K. Kapur, O. Singh, R. Mittal, ”Software
reliability growth and innovation diffusion
models: an interface”, International Journal
of Reliability, Quality and Safety
Engineering, (2004).

[17] F. Padberg, ”Maximum likelihood estimates
for the hypergeometric software reliability
model”, International Journal of Reliability,
Quality and Safety Engineering, (2003).

[18] P.K. Kapur, S.K. Khatri, M. Basirzadech,
”Software reliability assessment using
artificial neural network based flexible
model incorporating faults of different
complexity”, International Journal of
Reliability, Quality and Safety Engineering,
(2008).

[19] L. Tian, A. Noore, ”Software reliability
prediction using recurrent neural network
with Bayesian resularization”, International
Journal of Neural Systems, (2004).

[20] J. Zheng, ”Predicting software reliability
with neural network ensembles”, Expert
Systems with Applications, (2009).

[21] S.S. Gokhale, ”Software failure intensity,
reliability and optimal stopping time
incorporating repair policies”, International
Journal of Reliability, Quality and Safety
Engineering, (2006).

[22] P.J. Boland, H. Singh, ”Determining
the optimal release time for software
in the geometric Poisson reliability model”,
International Journal of Reliability, Quality
and Safety Engineering, (2002).

[23] X. Zhang, H. Pham, ”Comparison of
nonhomogeneous Poisson process software
reliability models and its application”,
International Journal of System Science,
(2000).

[24] K. Worwa, Modelowanie i ocena wzrostu
niezawodności oprogramowania w procesie
testowania, Wojskowa Akademia
Techniczna, (2005).

[25] S.H. Khan, Metryki i modele w inżynierii
jakości oprogramowania, Wydawnictwo
Naukowe PWN SA, (2006).

[26] M.R. Lyu, ”Software Reliability
Engineering: A Roadmap”, IEEE Computer
Society, (2007).

[27] S. Chatterjee, S.S. Alam, R.B. Misra,
”Sequential Bayesian technique:
An alternative approach for software
reliability estimation”, Sadhana, Vol. 34,
Part 2, (2009).

[28] T.M. Khoshgoftaar, T.G. Woodcook,
”Software reliability model selection”,
Quality and Reliability Engineering
International, (1992).

[29] M.R. Lyu, ”Software Reliability Theory”,
John Wiley & Sons, Inc., (2002).

[30] R.I. Zequeira, ”A model for Bayesian
software reliability analysis”, Quality
and Reliability Engineering international,
(2000).

[31] M. Kimura, S. Yamada, S. Osaki,
”Statistical Software Reliability Prediction
and Its Applicability Based on Mean Time
between Failures”, Elsevier Science Ltd.,
(1995).

[32] K. Sawada, H. Sandoh, ”A summary of
software reliability demonstration testing
models”, International Journal of
Reliability, Quality and Safety Engineering,
(1999).

[33] S. Ramani, S.S. Gokhale, K.S. Trivedi,
”SREPT: software reliability estimation
and prediction tool”, Performance
evaluation 39, (2000).

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 10 19−29 (2012)

 29

[34] T. Fujiwara, S. Yamada, ”Software
Reliability Growth Modeling Based on
Testing-Skill Characteristics: Model
and Application”, Electronics
and Communication in Japan, 2001.

[35] S. Yamada, Y. Tamura, M. Kimura,
”A Software Reliability Growth Model for
a Distributed Development Environment”,
Electronics and Communications in Japan,
(2000).

[36] H. Okamura, S. Kuroki, T. Dohi, S. Osaki,
”A Reliability Growth Model for Modular
Software”, Electronics
and Communications in Japan, (2004).

[37] H. Tanaka, S. Yamada, S. Osaki, ”Software
Reliability Growth Model with Continuous
Error Domain – Application of a Linear
Stochastic Differential Equation”,
Electronics and Communications in Japan,
(1992).

[38] A. Wood, ”Software Reliability Growth
Models”, Tandem Computers, (1996).

[39] H. Okamura, T. Dohi, ”Software reliability
modeling based on mixed Poisson
distribution”, International Journal of
Reliability, Quality and Safety Engineering,
(2008).

[40] J-B. Durand, O. Gaudoin, ”Software
reliability modeling and prediction with
hidden Markov chains”, Statistical
Modeling, (2005).

[41] S. Inoue, S. Yamada, ”Testing-coverage
dependent software reliability growth
modeling”, International Journal of
Reliability, Quality and Safety Engineering,
(2004).

[42] S. Yamada, T. Fujiwara, ”Testing-domain
dependent software reliability growth
models and their comparison of goodness-
of-fit”, International Journal of Reliability,
Quality and Safety Engineering, (2001).

[43] T. Fujiwara, S. Yamada, ”A Testing-
Domain-Dependent Software Reliability
Growth Model for Imperfect Debugging
Environment and Its Evaluation of
Goodness-of-Fit”, Electronics
and Communications in Japan, (2003).

[44] A. Gupta, R. Kapur, P.C. Jha, ”Considering
testing efficiency and testing resource
consumption variations in estimating
software reliability”, International Journal
of Reliability, Quality and Safety
Engineering, (2008).

[45] O. Gaudion, ”Software reliability models
with two debugging rates”, International
Journal of Reliability, Quality and Safety
Engineering, (1999).

[46] N. Schneidewind, ”Complexity-driven
reliability model”, International Journal of
Reliability, Quality and Safety Engineering,
(2008).

Modele wzrostu niezawodności oprogramowania

R. PEŁKA

Historia badań nad niezawodnością oprogramowania sięga lat 70. ubiegłego wieku. Od momentu pojawienia
się pierwszych publikacji poświęconych tej tematyce nastąpił znaczący rozwój i postęp prac mających na celu
między innymi budowę matematycznego modelu umożliwiającego badanie wzrostu niezawodności
oprogramowania w procesie jego testowania. Analizując dostępną literaturę, można dojść do wniosku, że nie
istnieje rozwiązanie uniwersalne, które dałoby się zastosować w każdym przypadku. Możliwa jest natomiast
klasyfikacja dostępnych modeli ze względu na cechy charakterystyczne poszczególnych rozwiązań, takie jak
dziedzina danych, sposób opisu błędów pojawiających się w procesie testowania, sposób opisu niezawodności
czy też pozostałych założeń, w tym narzędzi matematycznych wykorzystywanych w procesie ewaluacji.
Artykuł ten przedstawia przegląd istniejących rozwiązań modelowania niezawodności oprogramowania, kładąc
nacisk na różnorodność aspektów oraz metod wykorzystywanych w tym procesie.

Słowa kluczowe: modelowanie, oprogramowanie, niezawodność oprogramowania.

