PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider new concepts of terahertz and infrared photodetectors based on multiple graphene layer and multiple graphene nanoribbon structures and we evaluate their responsivity and detectivity. The performance of the detectors under consideration is compared with that of photodetectors made of the traditional structures. We show that due to high values of the quantum efficiency and relatively low rates of thermogeneration, the graphene-based detectors can exhibit high responsivity and detectivity at elevated temperatures in a wide radiation spectrum and can substantially surpass other detectors. The detector being discussed can be used in different wide-band and multi-colour terahertz and infrared systems.
Słowa kluczowe
Twórcy
autor
autor
autor
autor
autor
  • Computational Nanoelectronics Laboratory, University of Aizu, Ikki-machi, 965-8580 Aizu-Wakamatsu, Japan, v-ryzhii@u-aizu.ac.jp
Bibliografia
  • 1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys. 81, 109–162 (2009).
  • 2. L.A. Falkovsky and A.A. Varlamov, “Space−time dispersion of graphene conductivity”, Eur. Phys. J. B56, 281–284 (2007).
  • 3. V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor”, Appl. Phys. Express 1, 063002 (2008).
  • 4. V. Ryzhii and M. Ryzhii, “Graphene bilayer field−effect phototransistor for terahertz and infrared detection”, Phys. Rev. B79, 245311 (2009).
  • 5. F. Xia, T. Murller, Y.M. Lin, A. Valdes−Garsia, and F. Avouris, “Ultrafast graphene photodetector”, Nat. Nanotechnol. 4, 839–843 (2009).
  • 6. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p−i−n multiple-graphene structures”, J. Appl. Phys. 106, 084512 (2009).
  • 7. V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, and T. Otsuji, “Terahertz and infrared detectors based on graphene structures”, J. Infrared Phys. Technol. 54, 302–305 (2011).
  • 8. M. Ryzhii, T. Otsuji, V. Mitin, and V. Ryzhii, “Characteristics of p−i−n terahertz and infrared photodiodes based on multiple graphene layer structures”, Jpn. J. Appl. Phys. 50, 070117−1−6 (2011).
  • 9. M. Sprinkle, D. Suegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb−Ibrahimi, P. Le Fevre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W.A. De Heer, A. Lanzara, and E.H. Conrad, “First direct observation of a nearly ideal graphene band structure”, Phys. Rev. Lett. 103, 226803 (2009).
  • 10. M. Orlita and M. Potemski, “Dirac electronic states in graphene systems: optical spectroscopy studies”, Semicond. Sci. Tech. 25, 063001−1−21 (2010).
  • 11. V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity of different intersubband infrared photodetectors”, Semicond. Sci. Tech. 19, 8–16 (2004).
  • 12. A. Rogalski, J. Antoszewski, and L. Faraone, “Third generation infrared photodetector arrays”, J. Appl. Phys. 105, 091101 (2009).
  • 13. V. Ryzhii, “The theory of the quantum−dot infrared phototransistor”, Semicond. Sci. Tech. 11, 759–765 (1996).
  • 14. K.K. Choi, The Physics of Quantum Well Infrared Photodetectors, World Scientific, Singapore, 1997.
  • 15. Intersubband Infrared Photodetectors, edited by V. Ryzhii, World Scientific, Singapore, 2003.
  • 16. A. Rogalski, J. Antoszewski, and L. Faraone, “Third generation infrared photodetector arrays”, J. Appl. Phys. 105, 091101 (2009).
  • 17. A. Rogalski, Infrared Detectors, Taylor & Francis, 2010.
  • 18. D. Farmer, Y.M. Lin, A. Afzali−Ardakani, and P. Avouris, “Behaviour of a chemically doped graphene junction”, Appl. Phys. Lett. 94, 213106 (2009).
  • 19. V.V. Cheianov and V.I. Fal’ko, “Selective transmission of Dirac electrons and ballistic magneto resistance of n−p junctions in graphene”, Phys. Rev. B74, 041403 (R) (2006).
  • 20. A. Ossipov, M. Titov, and C.W.J. Beenakker, “Re−entrance effect in a graphene n−p−n junction coupled to a superconductor”, Phys. Rev. B75, 251401 (R) (2007).
  • 21. M. Ryzhii, V. Ryzhii, V. Mitin, T. Otsuji, and M.S. Shur, “Electrically induced n−i−p junctions in multiple graphene layer structures”, Phys. Rev. B82, 075419 (2010).
  • 22. L.A. Falkovsky and S.S. Perhoguba, “Optical far−infrared properties of a graphene monolayer and multilayer”, Phys. Rev. B76, 153410 (2007).
  • 23. V.V. Popov, T.Yu. Bagaeva, T. Otsiji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays”, Phys. Rev. B81, 073404 (2010).
  • 24. F.T. Vasko and A.V. Kuznetsov, Electronic States and Optical Transitions in Semiconductor Heterostructures, Springer, New York, 1998.
  • 25. A. Rose, Concepts in Photoconductivity and Allied Problems, Wiley, New York, 1963.
  • 26. F. Rana, P.A. George, J.H. Strait, S. Shivaraman, M. Chanrashekhar, and M.G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene”, Phys. Rev. B79, 115447−1−5 (2009).
  • 27. V. Ryzhii, M. Ryzhii, and T. Otsuji, “Thermionic and tunnelling transport mechanisms in graphene field−effect transistors”, Phys. Stat. Sol. (a) 205, 1527–1533(2008).
  • 28. M.S. Foster and I.L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B79, 085415 (2009).
  • 29. H. Luo, H.C. Liu, C.Y. Song, and Z.R. Wasilevskim, “Back-ground−limited terahertz quantum−well photodetector”, Appl. Phys. Lett. 86, 231103–231105 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0051-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.