PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Search for Ultimate Throughput in Ultra-Broadband Photonic Internet

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of our today’s understanding of the ultimately broadband photonic Internet is presented. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM. The Polish perspective closes the review.
Twórcy
Bibliografia
  • [1] A. D. Ellis and F. C. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photonics Technology Letters, vol. 17, pp. 504–506, 2005.
  • [2] G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal wavelength-division multiplexing using coherent detection,” IEEE Photonics Technology Letters, vol. 19, pp. 2015–2017, 2007.
  • [3] A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Mijamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30 x 100 Gb/s all-optical OFDM transmission over 1300 km SMF with ROADM node,” in 33rd European Conference and Exhibition of Optical Communication – Post-Deadline Papers, Berlin, 2007, paper PD 1.7.
  • [4] W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electronics Letters, vol. 42, pp. 587–589, 2006.
  • [5] I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Optics Express, vol. 14, pp. 3767–3775, 2006.
  • [6] T. Kobayashi, A. Sano, E. Yamada, Y. Mijamoto, H. Takara, and A. Takada, “Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation,” Electronics Letters, vol. 44, pp. 225–226, 2008.
  • [7] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 2123–2138, 2004.
  • [8] R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high speed optical transmission,” Journal of Lightwave Technology, vol. 20, pp. 417–427, 2002.
  • [9] S. L. Jansen, I. Morita, and H. Tanaka, 16 x 52,5 Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4160 km of SSMF enabled by MIMO processing KDDI R&D Laboratories. ECOC Berlin, 2007, paper PD 1.3.
  • [10] W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal bandmultiplexing,” Optics Express, vol. 16, pp. 6378–6386, 2008.
  • [11] W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electronics Letters, vol. 42, pp. 587–589, 2006.
  • [12] W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Optics Express, vol. 16, pp. 841–859, 2008.
  • [13] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 2123–2138, 2004.
  • [14] S. I. Jansen, L. Morita, and H. Tanaka, “10x121,9 Gb/s PDM-OFDM transmission with 2bit/s/Hz spectral efficiency over 1000 km of SSMF,” in OFC, San Diego USA, 2008, paper PdP2.
  • [15] D. S. Ly-Cagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” Journal of Lightwave Technology, vol. 24, pp. 12–21, 2006.
  • [16] E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Optics Express, vol. 16, pp. 753–791, 2008.
  • [17] S. J. Savory, G. Gavioli, R. I. Kitley, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Optics Express, vol. 15, pp. 2120–2126, 2008.
  • [18] H. Sun, K. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Optics Express, vol. 16, pp. 873–879, 2008.
  • [19] D. J. Blumenthal, B. E. Olsson, G. Rossi, T. E. Dimmick, L. Rau, M. Masnovic, O. Lavrova, R. Doshi, O. Jerphagnon, J. E. Bowers, V. Kaman, L. A. Coldren, and J. Barton, “All-optical label swapping networks and technologies,” Journal of Lightwave Technology, vol. 18, pp. 2058–2075, 2000.
  • [20] T. S. El-Bawab and J.-D. Shin, “Optical packet switching in core networks: Between vision and reality,” IEEE Communication Magazine, vol. 40, pp. 61–65, 2002.
  • [21] J. Yu, G.-K. Chang, and Q. Yang, “Optical label swapping in a packet-switched optical network using optical carrier suppression, separation, and wavelength conversion,” IEEE Photonics Technology Letters, vol. 16, pp. 2156–2158, 2004.
  • [22] H. Chen, M. Chen, Y. Dai, S. Xie, and B. Zhou, “All optical labelling with vestigial sideband payload,” Optics Letters, vol. 13, no. 7, pp. 2282–2288, 2005.
  • [23] A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 131–138, 2007.
  • [24] D. Yang and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Optics Express, vol. 17, no. 20, pp. 17 214–17 226, 2009.
  • [25] Q. Yang, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Optics Express, vol. 17, no. 10, pp. 7985–7992, 2009.
  • [26] J. McDonough, “Moving standards to 100GbE and beyond,” IEEE Applications and Practice, pp. 6–9, 2007.
  • [27] K. Lee, C. T. Thai, and J.-K. K. Rhee, “All optical discrete Fourier transform processor for 100-Gbps OFDM transmission,” Optics Express, vol. 16, no. 6, pp. 4023–4028, 2008.
  • [28] L. B. Du and A. J. Lowery, “Fiber nonlinearity precompensation for long-haul links using direct-detection optical OFDM,” Optics Express, vol. 16, no. 9, pp. 6209–6215, 2008.
  • [29] J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SO as as intensity modulators,” Optics Express, vol. 17, no. 11, pp. 9012–9027, 2009.
  • [30] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Optics Express, vol. 16, no. 2, pp. 860–865, 2008.
  • [31] C.-W. Chow, C.-H. Yeh, C.-H.Wang, F.-H. Shih, and C.-L. Pan, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express, vol. 16, no. 16, pp. 12 096–12 101, 2008.
  • [32] W. Shieh, H. Bao, and Y. Tang, “Cohernet optical OFDM: theory and design,” Optics Express, vol. 16, no. 2, pp. 841–859, 2008.
  • [33] H.-G. Weber and R. Ludwig, Optical Fiber Telecommunications V B: Systems and Networks. Elsevier, 2008, ch. 6: Ultra-high-speed OTDM transmission technology.
  • [34] H. Sotobayashi, W. Chujo, and T. Ozeki, “Ultrafast hierarchical OTDM/WDM network,” Systemics, Cybernetics and Informatics, vol. 1, no. 6, pp. 101–104, 2003.
  • [35] B.-E. Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technology Letters, vol. 13, no. 9, pp. 1005–1007, 2001.
  • [36] J. Dorosz and R. S. Romaniuk, “Fiber Optics Department of Biaglass Co. Twenty years of research activities,” Optica Applicata, vol. 28, no. 4, pp. 267–291, 1998.
  • [37] R. S. Romaniuk and J. Dorosz, “Technology of soft-glass optical fiber capillaries,” Proceedings of SPIE, vol. 6347, 2006, art no. 634710.
  • [38] R. S. Romaniuk, “Two classes of capillary optical fibres: Refractive and Photonic,” Proceedings of SPIE, vol. 7124, 2008, art no.71240D.
  • [39] R. S. Romaniuk, “Capillary optical fiber – Design, fabrication, characterization and application,” Bulletin of the Polish Academy of Sciences, vol. 56, no. 2, pp. 87–102, 2008.
  • [40] R. S. Romaniuk, “Applications of capillary optical fibers,” Proceedings of SPIE, vol. 6347, 2006, art no. 63470Z.
  • [41] R. S. Romaniuk, “Optical fiber capillaries in trunk telecommunications,” Proceedings of SPIE, vol. 6347, 2006, art no. 634712.
  • [42] R. S. Romaniuk and J. Dorosz, “Mechanical properties of hollow optical fibres,” Proceedings of SPIE, vol. 6347, 2006, art no. 634711.
  • [43] R. S. Romaniuk, “Multicore single-mode soft-glass optical fibres,” Optica Applicata, vol. 29, no. 1, pp. 15–49, 1999.
  • [44] J. Dorosz and R. S. Romaniuk, “Multicrucible technology of tailored optical fibres,” Optica Applicata, vol. 28, no. 4, pp. 293–322, 1998.
  • [45] R. S. Romaniuk, “Tensile strength of tailored optical fibres,” Opto-Electronics Review, vol. 8, no. 2, pp. 101–116, 2000.
  • [46] R. S. Romaniuk and J. Dorosz, “Measurement techniques of tailored optical fibres,” Proceedings of SPIE, vol. 5064, pp. 210–221, 2003.
  • [47] R. S. Romaniuk, “Manufacturing and characterization of ring index optical fibres,” Optica Applicata, vol. 31, no. 2, pp. 425–444, 2001.
  • [48] R. S. Romaniuk, “Nonlinear glasses and Metaglasses for photonics – A review part I – nonlinear electrical susceptibility and refractive index,” Proceedings of SPIE, vol. 6937, p. art no. 693716, 2008.
  • [49] R. S. Romaniuk, “Nonlinear glasses and Metaglasses for photonics – A review part II – Kerr nonlinearity and Metaglasses of positive and negative refraction,” Proceedings of SPIE, vol. 6937, 2008, art no. 693717.
  • [50] A. Dybko and W. Wróblewski et al., “Polymer track membranes as a track suport for reagent in fiber optic sensors,” Journal of Applied Polymer Science, vol. 59, no. 4, pp. 719–723, 1996.
  • [51] A. Dybko et al., “Fiber optic probe for monitoring of drinking water,” Proceedings of SPIE, vol. 3105, pp. 361–366, 1997.
  • [52] A. Dybko et al., “Efficient reagent immobilization procedure for ion-sensitive optomembranes,” Sensors and Actuators, B: Chemical, vol. 39, no. 1, pp. 207–211, 1997.
  • [53] A. Dybko et al., “Assessment of water quality based on multiparameter fiber optic probe,” Sensors and Actuators, B: Chemical, vol. 51, no. 1–3, pp. 208–213, 1998.
  • [54] A. Dybko et al., “Application of optical fibres in oxidation-reduction titrations,” Sensors and Actuators, B: Chemical, vol. 29, no. 1–3, pp. 374–377, 1995.
  • [55] K. T. Pózniak et al., “FPGA and optical network based LLRF distributed control system for Tesla-Xfel linear accelerator,” Proceedings of SPIE, vol. 5775, pp. 69–77, 2005.
  • [56] R. S. Romaniuk et al., “Optical network and FPGA/DSP based control system for free electron laser,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 53, no. 2, pp. 123–138, 2005.
  • [57] T. Janicki et al., “Integration of multi-interface conversion channel using FPGA for modulat photonic network,” Proceedings of SPIE, vol. 7745, 2010, art no. 77451H.
  • [58] A. Kalicki et al., “Ultrabroadband photonic Internet: Safety aspects,” Proceedings of SPIE, vol. 7124, 2008, art no. 712410.
  • [59] R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing – faster or denser?” Proceedings of SPIE, vol. 5484, pp. 19–28, 2004.
  • [60] W. Koprek, M. Stepien, M. Wojtas, K. T. Pozniak, and R. S. Romaniuk, “Broadband, optical Internet-based, modular, interactive information system for research department in university environment: part II,” Proceedings of SPIE, vol. 5775, pp. 543–555, 2005.
  • [61] W. Wójcik et al., “Optical fiber technology development in Poland,” Proceedings of SPIE, vol. 7745, 2010, art no. 774508.
  • [62] R. S. Romaniuk, “Wilga Photonics and Web Engineering 2010,” Proceedings of SPIE, vol. 7745, 2010, art no. 774503.
  • [63] R. S. Romaniuk, “Photonics applications and Web Engineering SPIE-PSP Wilga Symposium Series,” Proceedings of SPIE, vol. 7745, 2010, art no. 774502.
  • [64] R. S. Romaniuk, “Photonics and Web Engineering in Poland, Wilga 2009,” Proceedings of SPIE, vol. 7502, 2009, art no. 750202.
  • [65] J. Gajda et al., “Development of Laser Technology in Poland,” Proceedings of SPIE, vol. 7745, 2010, art no. 774507.
  • [66] J. R. Just and R. S. Romaniuk, “Highly parallel distributed computing system with optical interconnections,” Microprocessing and Microprogramming, vol. 27, no. 1–5, pp. 489–493, 1989.
  • [67] R. S. Romaniuk, “Tailored optical fibres,” Proceedings of SPIE, vol. 5028, pp. 1–18, 2003.
  • [68] R. S. Romaniuk, “Basic properties of ring-index optical fibres,” Proceedings of SPIE, vol. 5028, pp. 19–25, 2003.
  • [69] R. S. Romaniuk, “More light in Polish optical fibres, Invited Paper,” Proceedings of SPIE, vol. 5125, pp. 5–16, 2003.
  • [70] R. S. Romaniuk, “Intelligence in optical networks,” Proceedings of SPIE, vol. 5125, pp. 17–31, 2003.
  • [71] R. S. Romaniuk, K. T. Pozniak, and R. Salanski, “HOST – Hybrid optoelectronic telemetric system for Local Community,” Proceedings of SPIE, vol. 5125, pp. 38–58, 2003.
  • [72] R. S. Romaniuk, “Measurements of nonlinear optical fibers,” Proceedings of SPIE, vol. 5125, pp. 59–75, 2003.
  • [73] R. S. Romaniuk, “Photonics Letters of Poland – A new peer reviewed Internet publication of the Photonics Society of Poland,” Photonics Letters of Poland, vol. 1, no. 1, pp. 1–3, 2009.
  • [74] R. S. Romaniuk, “WILGA Symposium on Photonics Applications,” Photonics Letters of Poland, vol. 1, no. 2, pp. 46–48, 2009.
  • [75] G. Kasprowicz, L. Mankiewicz, K. Późniak, R. Romaniuk, M. Sokołowski, J. U˙zycki, and G. Wrochna, “CCD detectors for wide field optical astronomy,” Photonics Letters of Poland, vol. 1, no. 2, pp. 82–84, 2009.
  • [76] R. S. Romaniuk, “POLFEL – Free Electron Laser in Poland,” Photonics Letters of Poland, vol. 1, no. 3, pp. 103–105, 2009.
  • [77] R. S. Romaniuk, Modal structure design in refractive capillary optical fibers,” Photonics Letters of Poland, vol. 2, no. 1, pp. 22–24, 2010.
  • [78] R. S. Romaniuk, “WILGA Photonics and Web Engineering 2010,” Photonics Letters of Poland, vol. 2, no. 2, pp. 55–57, 2010.
  • [79] R. S. Romaniuk, “Geometry design in refractive capillary optical fibers,” Photonics Letters of Poland, vol. 2, no. 2, pp. 64–66, 2010.
  • [80] P. Obroślak, G. Kasprowicz, and R. S. Romaniuk, “Digital techniques for noise reduction in CCD cameras,” Photonics Letters of Poland, vol. 2, no. 3, pp. 134–136, 2010.
  • [81] R. S. Romaniuk, “Petabit photonic Internet,” Photonics Letters of Poland, vol. 3, no. 2, pp. 91–93, 2011.
  • [82] R. S. Romaniuk, “Photonics Applications and Web Engineering SPIE-PSP WILGA Symposium Series,” Proceedings of SPIE, vol. 7745, pp. 1–12, 2010, paper 774502.
  • [83] R. S. Romaniuk, “WILGA Photonics and Web Engineering 2010,” Proceedings of SPIE, vol. 7745, pp. 1–14, 2010, paper 774503.
  • [84] J. Modelski and R. S. Romaniuk, “Electronics and telecommunications in Poland, issues and perspectives; Part I: Society and Education,” Proceedings of SPIE, vol. 7745, pp. 1–16, 2010, paper 774504.
  • [85] J. Modelski and R. S. Romaniuk, “Electronics and telecommunications in Poland, issues and perspectives; Part II: Science, research, development, higher education,” Proceedings of SPIE, vol. 7745, pp. 1–21, 2010, paper 774505.
  • [86] J. Modelski and R. S. Romaniuk, Electronics and telecommunications in Poland, issues and perspectives; Part III: Innovativeness, applications, economy, development scenarios, politics,” Proceedings of SPIE, vol. 7745, pp. 1–16, 2010, paper 774506.
  • [87] W. Ackerman et al., “Operation of a free electron laser from the extreme ultraviolet to the water window,” Nature Photonics, vol. 1, no. 6, pp. 336–342, 2007.
  • [88] T. Czarski et al., “TESLA cavity modeling and digital implementation in FPGA technology for control system development,” Nuclear Instruments and Methods in Physics Research, Section A: accelerators, Spectrometers, Detectors and Associated Equipment, vol. 556, no. 2, pp. 565–576, 2006.
  • [89] T. Czarski et al., “Cavity parameters identification for TESLA control system development,” Nuclear Instruments and Methods in Physics Research, Section A: accelerators, Spectrometers, Detectors and Associated Equipment, vol. 548, no. 3, pp. 283–297, 2005.
  • [90] T. Czarski et al., “Superconducting cavity driving with fpga controller,” Nuclear Instruments and Methods in Physics Research, Section A: accelerators, Spectrometers, Detectors and Associated Equipment, vol. 568, no. 2, pp. 854–862, 2006.
  • [91] P. Fafara et al., “FPGA-based implementation of a cavity field controller for FLASH and X-FEL,” Measurement Science and Technology, vol. 18, no. 8, pp. 2365–2371, 2007, art no. 010.
  • [92] R. S. Romaniuk and K. Pozniak, “Metrological aspects of accelerator technology and high energy physics experiments,” Measurement Science and Technology, vol. 18, no. 8, 2008, art no. E01.
  • [93] B. Mukherjee et al., “Application of low-cost Gallium Arsenide lightemitting diodes as KERMA dosemeters and fluence monitor for high energy neutrons,” Radiation Protection Dosimetry, vol. 126, no. 104, pp. 256–260, 2007.
  • [94] W. Giergusiewicz et al., “Low latency control board for LLRF system – Simcon 3.1,” Proceedings of SPIE, vol. 5948, 2005, art no. 59482C.
  • [95] K. T. Poźniak et al., “FPGA based cavity simulator and controller for TESLA Test Facility,” Proceedings of SPIE, vol. 5775, 2005, art no. 02.
  • [96] P. Pucyk et al., “DOOCS server and client application for FPGA based TESLA cavity controller and simulator,” Proceedings of SPIE, vol. 5775, 2005, art no. 06.
  • [97] T. Czarski et al., “Cavity control system advanced modeling and simulation for TESLA linear accelerator and free electron laser,” Proceedings of SPIE, vol. 5484, pp. 69–87, 2004.
  • [98] T. Czarski et al., “TESLA cavity modeling and digital implementation with FPGA technology solution for control system development,” Proceedings of SPIE, vol. 5484, pp. 111–129, 2004.
  • [99] A. Burd et al., ““pi of the sky” – All-sky, real-time search for fast optical transients,” New Astronomy, vol. 10, no. 5, pp. 409–416, 2005.
  • [100] A. Burd et al., ““pi of the sky” – automated search for fast optical transients over the whole sky,” Astronomische Nachrichten, vol. 325, no. 6–8, p. 674, 2004.
  • [101] A. Burd et al., ““pi of the sky” – robotic search for cosmic flashes,” Proceedings of SPIE, vol. 6159, 2006, art no. 61590H.
  • [102] G. Wrochna, L. Mankiewicz, R. S. Romaniuk, and R. Sałański, “Apparatus to search for optical flashes of astronomical origin,” Proceedings of SPIE, vol. 5125, pp. 359–365, 2003.
  • [103] M. Kwiatkowski, G. Kasprowicz, K. T. Poźniak, R. S. Romaniuk, and G. Wrochna, “Advanced camera image data acquisition system for “Pi-of-the-Sky”,” Proceedings of SPIE, vol. 7124, p. 13, 2008, papier 7124OF.
  • [104] S. Chatrchyan et al., “The CMS experiment at the CERN LHC,” Journal of Instrumentation, vol. 3, no. 8, 2008, art no. S08004.
  • [105] S. Chatrchyan, K. Po´zniak, R. Romaniuk, and W. Zabołotny et al., “Commissioning of the CMS experiment and the cosmic run at four tesla,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03001.
  • [106] S. Chatrchyan et al., “Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03002.
  • [107] S. Chatrchyan et al., “Performance of the CMS drift-tube chamber local trigger with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03003.
  • [108] S. Chatrchyan et al., “Fine synchronization of the CMS muon drift-tube local trigger using cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03004.
  • [109] S. Chatrchyan et al., “Commissioning of the CMS High-Level Trigger with cosmic rayss,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03005.
  • [110] S. Chatrchyan et al., “CMS data processing workflows during an extended cosmic ray run,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03006.
  • [111] S. Chatrchyan et al., “Commissioning and performance of the CMS pixel tracker with cosmic ray muons,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03007.
  • [112] S. Chatrchyan et al., “Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03008.
  • [113] S. Chatrchyan et al., “Alignment of the CMS silicon tracker during commissioning with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03009.
  • [114] S. Chatrchyan et al., “Performance and operation of the CMS electromagnetic calorimeter,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03010.
  • [115] S. Chatrchyan et al., “Measurement of the muon stopping power in lead tungstate,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. P03007.
  • [116] S. Chatrchyan et al., “Time reconstruction and performance of the CMS electromagnetic calorimeter,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03011.
  • [117] S. Chatrchyan et al., “Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data CMS Collaboration,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03012.
  • [118] S. Chatrchyan et al., “Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03013.
  • [119] S. Chatrchyan et al., “Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03014.
  • [120] S. Chatrchyan et al., “Performance of the CMS drift tube chambers with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03015.
  • [121] S. Chatrchyan et al., “Calibration of the CMS drift tube chambers and measurement of the drift velocity with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03016.
  • [122] S. Chatrchyan et al., “Performance study of the CMS barrel resistive plate chambers with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03017.
  • [123] S. Chatrchyan et al., “Performance of the CMS cathode strip chambers with cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03018.
  • [124] S. Chatrchyan et al., “Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03019.
  • [125] S. Chatrchyan et al., “Alignment of the CMS muon system with cosmic-ray and beamhalo muons,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03020.
  • [126] S. Chatrchyan et al., “Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03021.
  • [127] S. Chatrchyan et al., “Performance of CMS muon reconstruction in cosmic-ray events,” Journal of Instrumentation, vol. 5, no. 3, 2010, art no. T03022.
  • [128] D. Rybka et al., “The concept of irradiation experiment,” in IEEE Eurocon 2007, The International Conference on Computer as a Tool, 2007, pp. 1251–1255, art no. 4400429.
  • [129] T. Czarski et al., “Hardware implementation of cavity parameters identification system,” in IEEE Eurocon 2007, The International Conference on Computer as a Tool, 2007, pp. 1278–1284, art no. 4400644.
  • [130] J. Szewiński et al., “Implementation of adaptive feed forward algorithm on the embedded PowerPC405 processor used to control the superconducting cavityu of Flash accelerator,” in IEEE Eurocon 2007, The International Conference on Computer as a Tool, 2007, pp. 1285–1288, art no. 4400649.
  • [131] S. Stankiewicz et al., “Apparatus to search for optical flashes of extragalactic origin,” in IEEE Nuclear Science Symposium Conference Record, 2004, pp. 400–404.
  • [132] T. Czarski et al., “Control system modeling for superconducting accelerator,” in Instrumentation and Measurement Technology Conference, 2007, art no. 4258483.
  • [133] R. S. Romaniuk and K. Poźniak, “Intranet and internet metrological network with photonic sensors and transmission,” Proceedings of SPIE, vol. 3731, pp. 224–245, 1999.
  • [134] R. S. Romaniuk, K. Późniak, and A. Dybko, “Intrnet nd internet metrological workstation with photonic sensors and transmission,” Proceedings of SPIE, vol. 3731, pp. 246–273, 1999.
  • [135] R. S. Romaniuk, K. Późniak, and A. Dybko, “Environmental tests of intranet and internet metrological stadion and network with photonic sensors and transmission,” Proceedings of SPIE, vol. 3731, pp. 274–295, 1999.
  • [136] R. S. Romaniuk, “Multicore optical fibers,” Revue Roumaine de Physique, vol. 32, no. 1–2, pp. 99–112, 1987.
  • [137] R. S. Romaniuk, “Reduction of the level of OH impurities in multimode optical fiber,” Elektronika, vol. 25, no. 12, pp. 11–15, 1984.
  • [138] R. S. Romaniuk and J. Dorosz, “Theoretcial assumptions of crucible technology of optical fibers with complex configurations of the core,” Elektronika, vol. 25, no. 9, pp. 22–24, 1984.
  • [139] R. S. Romaniuk, “Interferential interactions in the ligot guides,” Elektronika, vol. 24, no. 6, pp. 16–20, 1983.
  • [140] B. Darek et al., “Pulse tests of electroluminescent diodes for purposes of optical fiber telecommunication,” Elektronika, vol. 24, no. 1–2, pp. 53–55, 1983.
  • [141] R. S. Romaniuk, “Porównawcze badania radiacyjne ´swiatłowodów włóknistych,” Elektronika, vol. 24, no. 9, pp. 18–22, 1983.
  • [142] R. S. Romaniuk, “Optical fiber integrated interferometer,” Elektronika, vol. 24, no. 7–8, pp. 47–50, 1983.
  • [143] J. Dorosz and R. S. Romaniuk, “Production of multilayer optical fibers with complex refractive index profiles by means of multicrucible technology,” Elektronika, vol. 24, no. 1–2, pp. 27–31, 1983.
  • [144] R. S. Romaniuk et al., “Optical fiber instrumentation devices,” Elektronika, vol. 24, no. 4, pp. 18–25, 1983.
  • [145] R. S. Romaniuk, “Advances of optical fiber technology against the backgroun of the state of British technology,” Elektronika, vol. 23, no. 10-12, pp. 8–14, 1982.
  • [146] R. S. Romaniuk, “Reduction of OH-ions content in monomode optical fibers,” Elektronika, vol. 27, no. 10-11, pp. 8–11, 1986.
  • [147] R. S. Romaniuk, “Applications of capillary optical fibers,” Proceedings of SPIE, vol. 6347, 2006, art no. 63470Z.
  • [148] R. S. Romaniuk and J. Dorosz, “Technology of soft-glass optical fiber capillaries,” Proceedings of SPIE, vol. 6347, 2006, art no. 634710.
  • [149] R. S. Romaniuk et al., “Mechanical properties of hollow optical fibers,” Proceedings of SPIE, vol. 6347, 2006, art no. 634711.
  • [150] R. S. Romaniuk, “Optical fiber capillaries in trunk telecommunications,” Proceedings of SPIE, vol. 6347, 2006, art no. 634712.
  • [151] Proceedings of SPIE, vol. 5576, 2004, art no. 52.
  • [152] R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing – faster or denser,” Proceedings of SPIE, vol. 5484, pp. 19–28, 2004.
  • [153] R. S. Romaniuk, “Cavity control system – optimization methods for single cavity driving and envelope detection,” Proceedings of SPIE, vol. 5484, pp. 99–110, 2004.
  • [154] R. S. Romaniuk, “Search for optical flashes accompanying gamma ray bursts – “Pi of the Sky” Collaboration,” Proceedings of SPIE, vol. 5484, pp. 283–289, 2004.
  • [155] R. S. Romaniuk, “Tailored optical fibers,” Proceedings of SPIE, vol. 5028, pp. 1–18, 2003.
  • [156] R. S. Romaniuk, “Basic properties of ring-index optical fibers,” Proceedings of SPIE, vol. 5028, pp. 19–25, 2003.
  • [157] R. S. Romaniuk, “Intelligence in optical networks,” Proceedings of SPIE, vol. 5125, pp. 17–31, 2002.
  • [158] R. S. Romaniuk, “More light in Polish optical fibers,” Proceedings of SPIE, vol. 5125, pp. 5–16, 2002.
  • [159] R. S. Romaniuk, “Measurements of nonlinear optical fibers,” Proceedings of SPIE, vol. 5125, pp. 59–75, 2002.
  • [160] J. Dorosz et. al., “Temperature sensor based on double core optical fiber,” Proceedings of SPIE, vol. 4887, pp. 55–66, 2002.
  • [161] J. Dorosz et. al., “Current developments of multicrucible technology of tailored optical fibers,” Proceedings of SPIE, vol. 3731, pp. 32–58, 1999.
  • [162] K. T. Pozniak et al., “Gigabit optical link test system for RPC Muon trigger at CMS experiment,” Proceedings of SPIE, vol. 5125, pp. 155–164, 2003.
  • [163] K. T. Pozniak et al, “HOST – Hybrid optoelectronic telemetric system for Local Community,” Proceedings of SPIE, vol. 5125, pp. 38–58, 2003.
  • [164] G. Wrochna et al., “Apparatus to searach for optical flashes of astronomical origin,” Proceedings of SPIE, vol. 5125, pp. 359–363, 2003.
  • [165] J. Maciejewski et al., “Correction of fiber optic ion sensor readings using a fiber optic temperature sensor,” Proceedings of SPIE, vol. 3731, pp. 161–166, 1999.
  • [166] K. T. Późniak, R. S. Romaniuk, and K. Kierzkowski, “Modular version of SIMCON, FPGA based, DSP integrated, LLRF control system for TESLA FEL, Part I: SIMCON 3.0 motherboard [6159-04],” Proceedings of SPIE, vol. 6159, pp. 30–37, 2006, art no. 615904.
  • [167] W. Giergusiewicz and K. T. Pozniak et al., “Modular version of SIMCON, FPGA based, DSP integrated, LLRF control system for TESLA FEL, Part II: Measurement of SIMCON 3.0 DSP daughterboard,” Proceedings of SPIE, vol. 6159, 2006, art no.615905.
  • [168] J. Dorosz and R. S. Romaniuk, “Development of optical fiber technology in Poland,” Proceedings of SPIE, vol. 8010, 2011, art no. 8010-02.
  • [169] R. S. Romaniuk, “Ultrabroadband photonic Intenret,” Proceedings of SPIE, vol. 8010, 2011, art no. 8010-03.
  • [170] R. S. Romaniuk, “Modulation and multiplexing in photonic Internet, part I,” Proceedings of SPIE, vol. 8010, 2011, art no. 8010-04.
  • [171] R. S. Romaniuk, “Modulation and multiplexing in photonic Internet, part II,” Proceedings of SPIE, vol. 8010, 2011, art no. 8010-05.
  • [172] Future Internet Engineering [www.iip.net.pl].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0051-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.