PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Internal Ballistic Parameters of Solid Propellant Rocket Motors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Scientific Aspects of Armament and Safety Technology. 8 International Armament Conference ; 6-8.10.2010 ; Pułtusk, Poland
Języki publikacji
EN
Abstrakty
EN
A modular computer program named SPPMEF has been developed which isintended for purposes of predicting internal ballistic performances of solid propellantrocket motors. The program consists of the following modules: TCPSP (Calculation of thermo-chemical properties of solid propellants), NOZZLE (Dimensioning of nozzle and estimation of losses in rocket motors), GEOM (This module consists of two parts: a part for dimensioning of the propellant grain and a part for regression of burning surface) and ROCKET (This module provides prediction of an average delivered performance, as well as mass flow, pressure, thrust and impulse as functions of burning time). The program is verified with experimental results obtained from standard ballistic rocket test motors and experimental rocket motors. Analysis of results has shown that the established model enables high accuracy in prediction of solid propellant rocket motors features in cases where influence of combustion gases flow on burning rate is not significant.
Twórcy
autor
autor
autor
autor
  • Defense Technologies Department, Mechanical Engineering Faculty, University of Sarajevo, Vilsonovo setaliste 9 71000 Sarajevo, Bosnia and Herzegovina
Bibliografia
  • [1] Davenas A., Solid Rocket Motor Design, Tactical Missile Propulsion, Edited by Jensen E.G. and Netzer W. D., Progress in Astronautics and Aeronautics, vol. 170, AIAA, 1996.
  • [2] Zeller B., Solid Propellant Grain Design, AGARD-LS-150, Design Method in Solid Rocket Motors, Paris, 1988.
  • [3] Dunn S. S. and Coats D. E., 3-D Grain Design and Ballistic Analysis, AIAA 97-3340, Software and Engineering Associates, Inc. Carson City, NV, 1997.
  • [4] Dunn S. S. and Coats D. E., Nozzle Performance Predictions Using the TDK 97 Code, AIAA 97-2807, Software and Engineering Associates, Inc. Carson City, NV, 1997.
  • [5] Coats D. E., Dunn S. S., French J. C., Performance Modeling Requirements for Solid Propellant Rocket Motors, Published by the Chemical Propulsion Information Agency, 2003.
  • [6] Coats D. E., French J. C., Dunn S. S., Berker D. R., Improvements to the Solid Performance Program (SPP), 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA-2003-4504, 20-23 July 2003.
  • [7] Coats D. E., Levine J. N., Cohen N. S., Nickerson G. R., Tyson T. J., A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance, vol. 1, Air Force Rocket Propulsion Laboratory, July 1975.
  • [8] Scippa S., Propellant Grain Design, AGARD-LS-150, Design Method in Solid Rocket Motors, Paris, 1988.
  • [9] Annual Reports (1998-1999, 2000-2001, 2001-2002, 2002-2003, 2003-2004, 2004-2005 and 2005-2006), Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Chamaign, Urbana, Illinois 61801, 1999, 2001, 2002, 2003, 2004, 2005, 2006.
  • [10] Alvilli P., Buckmaster J., Jackson T. L. and Short M., Ignition-transient modeling for solid propellant rocket motors, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, 16-19 July, 2000.
  • [11] Alvilli P., Tafti D., Najjar F., The development of an advanced solid rocket flow simulation, program ROCFLO, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, January 2000.
  • [12] Willcox M. A., Brewster M. Q., Tang K. C., Stewart D. S., and Kuznetsov I., Solid rocket motor internal ballistics simulation using three-dimensional grain burnback, Journal of Propulsion and Power vol. 23, No. 3, May-June 2007.
  • [13] Terzic J., Prediction of Idealized Internal Ballistic Properties of a Rocket Motor with DB Solid Propellant, Master thesis, University of Sarajevo, Faculty of Mechanical Engineering, 2002.
  • [14] Terzić J., Lekić A. and Zečević B., Prediction the theoretical interior ballistic properties of solid propellant rocket motors, Proceedings of the Sixth Seminar “New Trends in Research of Energetic Materials”, University of Pardubice, Pardubice, pp. 420-435, April 2003.
  • [15] STANAG 4400 Derivation of Thermochemical Values for Interior Ballistic Calculation, NATO Military Agency for Standardization, Brussels, 1993.
  • [16] Cunningham J., Ingredients of Propellant Data, Martin Marieta, Orlando, 1986.
  • [17] Gordon S. and McBride B., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II. Users Manual and Program Description, NASA Reference Publication 1311, June 1996.
  • [18] Chung I. Y., An Interactive computer Code for Preliminary Design of Solid Propellant Rocket Motors, Master's Thesis, Naval Postgraduate Schole, Montrey, AD-A192 869, December 1987.
  • [19] Landsbaum E. M. and Salinas M. P., Solid Propellant Specific Impulse Prediction, AGARD-CP-259, Solid Rocket Motor Technology, Oslo, 2-5 April 1979.
  • [20] ATK Space Propulsion Products Catalog, Alliant Techsystems Inc., May 2008.
  • [21] Brooks W. T., Ballistic Optimization of the star grain configuration, AIAA 80-1136R, AIAA/SAE/ASME 16th Joint Propulsion Conference, Hratford, 1980.
  • [22] Terzić J., Zečević B., Serdarević-Kadić S., Model of optimization for the rocket star grain, 4th International Symposium, Revitalization and Modernization of Production RIM 2003, Bihać, September 2003.
  • [23] Haymes W. G., Williamson J. E., McClendon S. E. and Brooks W. T, Solid Rocket Motor Design Automation Technology, AGARD-CP-259, Solid Rocket Motor Technology, Oslo, April 1979.
  • [24] Solid Rocket Motor Performance Analysis and Prediction, NASA Report SP 8039, May 1971, N72-18785.
  • [25] Fry R. S., Solid Propellant Subscale Burning Rate Analysis Methods for U.S. and Selected NATO Facilities, The Johns Hopkins University, Chemical Propulsion Information Agency, Columbia, Maryland, January 2002.
  • [26] Fry R. S., Solid Propellant Test Motor Scaling, The Johns Hopkins University, Chemical Propulsion Information Agency, Columbia, Maryland, September 2001.
  • [27] Zecevic B., Influence of the Variable Radial Acceleration to Internal Ballistics of Rocket Motors with DB Propellants, Dissertation, University of Sarajevo, Faculty of Mechanical Engineering, 1999.
  • [28] Moore C. A., Guernsey C., Development and Qualification of the Rocket-Assisted Deceleration (RAD) and Transverse Impulse Rocket System (TIRS) Motors for Mars Exploration Rover (MER), Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, 2004.
  • [29] Zecević B., Terzić J. and Baskarad M., Influence of the solid propellant grains processing on burning rate of double base rocket propellants, Proceedings of the Sixth Seminar “New Trends in Research of Energetic Materials”, University of Pardubice, Pardubice, pp. 420-435, April 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0050-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.