PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Scientific Realism and Instrumentalism in Manoeuvring Target Modelling and Tracking

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic problem of tracking manoeuvring moving objects (e.g. aircrafts, ships) lies in unpredictability of object manoeuvres, with respect to the time of occurrence, duration and the type of trajectory. In this paper most representative methods of modelling and state estimation techniques applied to Manoeuvring Target Tracking (MTT) are briefly reviewed. Classification of existing approaches is made in the context of realistic and instrumentalistic paradigms of the philosophy of science. A practical example is also given that shows the impact of selecting models and estimation methods on the performance of the tracking filter for Air Traffic Control (ATC) radar.
Twórcy
autor
Bibliografia
  • [1] Y. Bar-Shalom and K. Birmiwal, “Variable dimension filter for maneuvering target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 18, no. 5, pp. 621–629, Sep. 1982.
  • [2] Y. Bar-Shalom and W. Blair, Eds., Multitarget-Multisensor Tracking: Applications and Advances. Norwood, MA: Artech House, 2000, vol. 3.
  • [3] Y. Bar-Shalom, K. Chang, and H. Blom, “Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 25, no. 2, pp. 296–300, Mar. 1989.
  • [4] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association. Orlando, FL: Academic Press Inc., 1988.
  • [5] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York, NY: John Wiley & Sons, Inc., 2001.
  • [6] T. Benedict and G. Bordner, “Synthesis of an optimal set of radar trackwhile-scan smoothing equations,” IRE Trans. Automat. Contr., vol. 7, no. 4, pp. 27–32, Jul. 1962.
  • [7] R. Berg, “Estimation and prediction for maneuvering target trajectories,” IEEE Trans. Autom. Control, vol. 28, no. 3, pp. 294–304, Mar. 1983.
  • [8] J. Besada, J. Garcia, G. de Miguel, A. Berlanga, J. Molina, and J. Casar, “Design of IMM filter for radar tracking using evolution strategies,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1, pp. 96–119, Jan. 2005.
  • [9] S. Blackman, Multiple-Target Tracking with Radar Applications. Dedham, MA: Artech House, 1986.
  • [10] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Norwood, MA: Artech House, 1999.
  • [11] W. Blair and G. Watson, “Second order interacting multiple model algorithm for tracking maneuvering targets,” in Proc. SPIE Conf. Signal and Data Processing of Small Targets, vol. 1954, 1993, pp. 518–529.
  • [12] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Autom. Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.
  • [13] H. Blom, R. Hogendoorn, and B. van Doorn, “Design of a multisensor tracking system for advanced air traffic control,” in Multitarget-Multisensor Tracking: Applications and Advances, Y. Bar-Shalom, Ed. Norwood, MA: Artech House, 1990, vol. 2, ch. 2, pp. 31–63.
  • [14] P. Bogler, “Tracking a maneuvering target using input estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 23, no. 3, pp. 298–310, May 1987.
  • [15] F. Castella, “An adaptive two-dimensional Kalman tracking filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 16, no. 6, pp. 822–829, Nov. 1980.
  • [16] A. Chalmers, What Is This Thing Called Science? Hackett Pub., 1999.
  • [17] Y. Chan, A. Hu, and J. Plant, “A Kalman filter based tracking scheme with input estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 15, no. 2, pp. 237–242, Mar. 1979.
  • [18] C. Chang and M. Athans, “State estimation for discrete systems with switching parameters,” IEEE Trans. Aerosp. Electron. Syst., vol. 14, no. 3, pp. 418–424, May 1978.
  • [19] C. Chang and J. Tabaczynski, “Application of state estimation to target tracking,” IEEE Trans. Autom. Control, vol. 29, no. 2, pp. 98–109, Feb. 1984.
  • [20] J. Cloutier, C. Lin, and C. Yang, “Enhanced variable dimension filter for maneuvering target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 786–797, Jul. 1993.
  • [21] F. Dufour and M. Mariton, “Tracking a 3D maneuvering target with passive sensors,” IEEE Trans. Aerosp. Electron. Syst., vol. 27, no. 4, pp. 725–738, Jul. 1991.
  • [22] P. Easthope and N. Heys, “A multiple-model target-oriented tracking system,” in Proc. SPIE Conf. Signal and Data Processing of Small Targets, vol. 2235, 1994, pp. 624–635.
  • [23] M. Efe, J. Bather, and D. Atherton, “An adaptive Kalman filter with sequential rescaling of process noise,” in Proc. American Control Conference, vol. 6, San Diego, CA, Jun. 1999, pp. 3913–3917.
  • [24] EUROCONTROL Standard Document for Radar Surveillance in En- Route Airspace and Major Terminal Areas, EUROCONTROL, Brussels, Belgium, Mar. 1997, Edition 1.0.
  • [25] WGS-84 Implementation Manual, EUROCONTROL, Brussels, Belgium, Institute of Geodesy and Navigation IfEN, University FAF Munich, Germany, Feb. 1998, version 2.4.
  • [26] A. Farina and S. Pardini, “Survey of radar data-processing techniques in air-traffic-control and surveillance systems,” IEE Proc., Commun., Radar and Signal Processing, vol. 127F, no. 3, pp. 190–204, Jun. 1980.
  • [27] A. Farina and F. Studer, Radar Data Processing. Letchworth, England: Research Studies Press Ltd, 1985, vol. 1/2.
  • [28] N. Gholson and R. Moose, “Maneuvering target tracking using adaptive state estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 13, no. 3, pp. 310–317, May 1977.
  • [29] F. Gustafsson and A. Isaksson, “Best choice of coordinate system for tracking coordinated turns,” in Proc. IEEE Conf. on Decision and Control, vol. 3, Kobe, Japan, 1996, pp. 3145–3150.
  • [30] A. Jazwinski, “Limited memory optimal filtering,” IEEE Trans. Autom. Control, vol. 13, no. 5, pp. 558–563, Oct. 1968.
  • [31] K. Kastella and M. Biscuso, “Tracking algorithms for air traffic control applications,” Air Traffic Control Quaterly, vol. 3, no. 1, pp. 19–43, Jul. 1995.
  • [32] T. Kerr, “Duality between failure detection and radar/optical maneuver detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 25, no. 4, pp. 581–584, Jul. 1989.
  • [33] T. Kirubarajan, Y. Bar-Shalom, K. Pattipati, and I. Kadar, “Ground target tracking with variable structure IMM estimator,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 1, pp. 26–44, Jan. 2000.
  • [34] Z. Kowalczuk and M. Sankowski, “Exclusive and non-exclusive multimodel tracking filters for air traffic control,” in Proc. IFAC Symp. Automatic Control in Aerospace, Bologna/Forlì, Italy, Sep. 2001, pp. 135–140.
  • [35] Z. Kowalczuk and M. Sankowski, “Detection and isolation of manoeuvres in adaptive tracking filtering based on multiple model switching,” in Fault Diagnosis, J. Korbicz et al., Eds. Heidelberg, Germany: Springer-Verlag, 2004, ch. 20, pp. 781–819.
  • [36] Z. Kowalczuk and M. Sankowski, “Soft- and hard-decision multiple-model estimators for air traffic control,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 4, pp. 2056–2065, Oct. 2010.
  • [37] O. Lanka, “Circle manoeuvre classification for manoeuvring radar targets tracking,” Tesla Electronics, vol. 17, no. 1, pp. 10–17, 1984.
  • [38] D. Magill, “Optimal adaptive estimation of sampled stochastic processes,” IEEE Trans. Autom. Control, vol. 10, no. 4, pp. 434–439, Oct. 1965.
  • [39] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: A survey,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103–123, Jan. 1998.
  • [40] R. McAulay and E. Denlinger, “A decision-directed adaptive tracker,” IEEE Trans. Aerosp. Electron. Syst., vol. 9, no. 2, pp. 229–236, Mar. 1973.
  • [41] R. Mehra, “Approaches to adaptive filtering,” IEEE Trans. Autom. Control, vol. 17, no. 5, pp. 693–698, Oct. 1972.
  • [42] R. Moose, H. Vanlandingham, and D. McCabe, “Modeling and estimation for tracking maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 15, no. 3, pp. 448–456, May 1979.
  • [43] N. Nabaa and R. Bishop, “Validation and comparison of coordinated turn aircraft maneuver models,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 1, pp. 250–259, Jan. 2000.
  • [44] Y. Park, J. Seo, and J. Lee, “Tracking using the variable-dimension filter with input estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 1, pp. 399–408, Jan. 1995.
  • [45] C. R. Rao, Statistics and Truth. New Delhi, India: Council of Scientific and Industrial Research, 1989.
  • [46] J. Roecker and C. McGillem, “Target tracking in maneuver-centered coordinates,” IEEE Trans. Aerosp. Electron. Syst., vol. 25, no. 6, pp. 836–842, Nov. 1989.
  • [47] X. Rong Li, “Model-set design for multiple-model method–Part I,” in Proc. Int. Conf. on Multisource-Multisensor Information Fusion FUSION, vol. 1, Annapolis, MD, Jul. 2002, pp. 26–33.
  • [48] X. Rong Li and Y. Bar-Shalom, “Design of an interacting multiple model algorithm for air traffic control tracking,” IEEE Trans. Control Syst. Technol., vol. 1, no. 3, pp. 186–193, Sep. 1993.
  • [49] X. Rong Li and Y. Bar-Shalom, “Performance prediction of the interacting multiple model algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 755–771, Jul. 1993.
  • [50] X. Rong Li and Y. Bar-Shalom, “Multiple-model estimation with variable structure,” IEEE Trans. Autom. Control, vol. 41, no. 4, pp. 478–493, Apr. 1996.
  • [51] X. Rong Li and V. Jilkov, “A survey of maneuvering target tracking – Part IV: Decision based methods,” in Proc. SPIE Conf. Signal and Data Processing of Small Targets, vol. 4728, Orlando, FL, Apr. 2002, pp. 511–534.
  • [52] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. Part I: Dynamic models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1333–1364, Oct. 2003.
  • [53] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. Part V: Multiple-model methods,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 4, pp. 1255–1321, Oct. 2005.
  • [54] J. Ru, V. Jilkov, X. Rong Li, and A. Bashi, “Detection of target maneuver onset,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp. 536–554, Apr. 2009.
  • [55] M. Sankowski, “Target course estimation in radar tracking using Cartesian coordinates,” in In preparation. To be published.
  • [56] M. Sankowski, “Tracking algorithms based on analytical models of movement trajectories,” Ph.D. dissertation, Gdansk University of Technology, WETI, Gdańsk, Poland, May 2005.
  • [57] M. Sankowski, “Reference model of aircraft movements in geodetic coordinates,” in Proc. Int. Radar Symp., Leipzig, Germany, Sep. 2011, pp. xx–xx, To appear in.
  • [58] R. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 6, no. 4, pp. 473–483, Jul. 1970.
  • [59] R. Singer and K. Behnke, “Real-time tracking filter evaluation and selection for tactical applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 7, no. 1, pp. 100–110, Jan. 1971.
  • [60] R. Singer and P. Frost, “On the relative performance of the Kalman and Wiener filters,” IEEE Trans. Autom. Control, vol. 14, no. 4, pp. 390–394, Aug. 1969.
  • [61] P. Suchomski, “High-order interacting multiple-model estimation for hybrid systems with Markovian switching parameters,” Int. J. of System Science, vol. 32, no. 5, pp. 669–679, 2001.
  • [62] J. Thorp, “Optimal tracking of maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 9, no. 4, pp. 512–519, Jul. 1973.
  • [63] P. Uruski and M. Sankowski, “Application of analytical models of target motion in state estimation for air traffic control,” in Proc. of Conf. on Autom. Control in Radar and Flying Objects, vol. 1, Jelenia Góra, Poland, Jun. 2001, pp. 301–310, (In Polish).
  • [64] P. Vacher, I. Barret, and M. Gauvrit, “Design of a tracking algorithm for an advanced ATC system,” in Multitarget-Multisensor Tracking: Applications and Advances, Y. Bar-Shalom, Ed. Norwood, MA: Artech House, 1990, vol. 2, ch. 1, pp. 1–29.
  • [65] H. Wang, T. Kirubarajan, and Y. Bar-Shalom, “Precision large scale air traffic surveillance using IMM/assignment estimators,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 1, pp. 255–266, Jan. 1999.
  • [66] G. Watson and W. Blair, “IMM algorithm for tracking targets that maneuver through coordinated turns,” in Proc. SPIE Conf. Signal and Data Processing of Small Targets, vol. 1698, 1992, pp. 236–247.
  • [67] A. Willsky and H. Jones, “A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems,” IEEE Trans. Autom. Control, vol. 21, no. 2, pp. 108–112, Feb. 1976.
  • [68] M. Yeddanapudi, Y. Bar-Shalom, and K. Pattipati, “IMM estimation for multitarget-multisensor air traffic surveillance,” Proc. IEEE, vol. 85, no. 1, pp. 80–94, Jan. 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0049-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.