PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gait Variations in Human Micro-Doppler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurement of human gait variation is important for security applications such as the indication of unexpected loading due to concealed weapons. To observe humans safely, unobtrusively, and without privacy issues, radar provides one method to detect abnormal activity without using images. In this paper we focus on modeling the characteristics of human walking parameters in order to determine signature differences that are distinguishable and to determine the variability of normal walking to be compared to armed or loaded walking. We extract micro-Doppler from motion-captured human gait models and verify the models with radar measurements. We then vary the model to determine the extent of normal micro-Doppler variation in multiple dimensions of human gait. We also characterize the ability of radar to determine gender and suggest that alternative views to the frontal view may be more discriminative.
Słowa kluczowe
EN
radar   human   gait  
Twórcy
autor
autor
  • US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Bibliografia
  • [1] L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice Hall, 1995.
  • [2] V. C. Chen and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis. Norwood: Artech House, 2002.
  • [3] S. Z. Gürbüz, W. L. Melvin, and D. B. Williams, “Detection and Identification of Human Targets in Radar Data,” Proceedings of the SPIE, vol. 6567, 2007.
  • [4] G. Greneker, “Very Low Cost Stand-Off Suicide Bomber Detection System Using Human Gait Analysis to Screen Potential Bomb Carrying Individuals,” Proceedings of the SPIE, vol. 5788, 2005.
  • [5] J. L. Geisheimer, W. S. Marshall, and E. Greneker, “A Continuous-Wave (CW) Radar for Gait Analysis,” Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 834–838, 2001.
  • [6] D. A. Tahmoush, J. Silvious, and R. Wellman, “Target Discrimination with a Radar Unattended Ground Sensor,” in Proceedings of the 2009 MSS Battlespace and Acoustic Symposium, Laurel, MD, August 2009.
  • [7] R. Boulic, N. Thalmann, and D. Thalmann, “A Global Human Walking Model with Real-time Kinematic Personification,” The Visual Computer, vol. 6, no. 6, pp. 344–358, 1990.
  • [8] A. Bruderlin and T. Calvert, “Interactive Animation of Personalized Human Locomotion,” in Proceedings of Graphics Interface, 1993, pp. 17–23.
  • [9] H. Ko and J. Cremer, “VRLOCO: Real-time Human Locomotion from Positional Input Streams,” Presence, vol. 5, no. 4, pp. 367–380, 1996.
  • [10] J. Laszlo, M. van de Panne, and E. Fiume, “Limit Cycle Control and Its Application to the Animation of Balancing and Walking,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 1996, pp. 155–162.
  • [11] M. McKenna and D. Zeltzer, “Dynamic Simulation of Autonomous Legged Locomotion,” in Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, 1990, pp. 29–38.
  • [12] C. Rose, M. Cohen, and B. Bodenheimer, “Verbs and Adverbs: Multidimensional Motion Interpolation,” IEEE Computer Graphics and Applications, vol. 18, no. 5, pp. 32–40, 1998.
  • [13] K. Tsutsuguchi, S. Shimada, Y. Suenaga, N. Sonehara, and S. Ohtsuka, “Human Walking Animation Based on Foot Reaction Force in the Threedimensional Virtual World,” Journal of Visualization and Computer Animation, vol. 11, no. 1, pp. 3–16, 2000.
  • [14] N. F. Troje, “Decomposing Biological Motion: A Framework for Analysis and Synthesis of Human Gait Patterns,” Journal of Vision, vol. 2, no. 5, pp. 371–387, 2002.
  • [15] T. Dogaru, C. Le, and G. Kirose, “Time-Frequency Analysis of a Moving Human Doppler Signature,” February 2009, aRL-TR-4728.
  • [16] J. L. Geisheimer, W. S. Marshall, and E. F. Greneker, “A High-resolution Doppler Model of Human Gait,” Radar Sensor Technology and Data Visualization Proceedings of SPIE, vol. 4744, pp. 8–18, April 2002.
  • [17] P. van Dorp and F. C. A. Groen, “Human Walking Etimation with Radar,” IEE Proceedings on Radar, Sonar and Navigation, vol. 150, pp. 4237–4241, August 2005.
  • [18] D. A. Tahmoush and J. Silvious, “Radar MicroDoppler for Security Applications: Modeling Men Versus Women,” in International Symposium on Antennas and Propagation Society, Charleston, 1-5 June 2009, pp. 1–5.
  • [19] D. Tahmoush, R. Wellman, and J. Silvious, “A Compact Persistent Surveillance Radar with Micro-Doppler Capabilities,” in Proceedings of IEEE Symposium on Antennas and Propagation, 2009.
  • [20] R. Wellman, J. Clark, D. Judy, E. Viveiros, S. Weiss, D. Wikner, E. Adler, and J. Kurtz, “Design of a Compact, Low-Power Radar for Unattended Ground Sensor Applications,” in Proceedings of the Tri-Service Radar Symposium, 2009.
  • [21] D. Tahmoush and J. Silvious, “Dismount Threat Detection via Radar Doppler,” in Proceeding of the Tri-Service Radar Symposium, 2009.
  • [22] D. A. Tahmoush and J. Silvious, “Angle, Elevation, PRF, and Illumination in Radar MicroDoppler for Security Applications,” in Proceedings of the IEEE International Symposium on Antennas and Propagation, June 2009.
  • [23] D. Tahmoush and J. Silvious, “Radar Micro-Doppler for Long Range Front-View Gait Recognition,” in Proceedings of the IEEE Conference on Biometrics: Theory, Applications and Systems, Arlington, VA, September 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0049-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.