PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A 800 µW 1 GHz Charge Pump Based Phase-Locked Loop in Submicron CMOS Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Demand of modern measurement systems in submicron CMOS process introduced new challenges in design of low power high frequency clock generation systems. Technical possibilities for clock generation using classical oscillator based on a quartz filter is limited to tens of megahertz. Thus, 1 GHz clock generation is not possible without a frequency multiplier system. It is difficult to achieve, because in submicron process, where the integration of analog and digital blocks poses serious challenges. The proposed solution is a low power charge pump phase-locked loop (CPPLL) with the center frequency of 1 GHz. It combines various modern circuit techniques, whose main aim is to lower power consumption, which is below 800µW for the whole PLL, while maintaining good noise properties, where the jitter rms is 8.87 ps. The proposed phase-locked loop is designed in 0.18 µm CMOS process.
Twórcy
  • Department of Measurement and Instrumentation, AGH University of Science and Technology, Cracow, Poland, zaziabl@agh.edu.pl
Bibliografia
  • [1] F. M. Gardner, Phaselock techniques. New Jersey: John Wiley and Sons, 2005.
  • [2] J. A. Tierno, A. Rylyakov, and D. Friedman, “A wide power supply range, wide tuning range, all static cmos all digital pll in 65 nm soi,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 42-52, 2008.
  • [3] A. Arakali, N. Talebbeydokthi, S. Gondi, and P. Hanumolu, “Supplynoise mitigation techniques in phaselocked loops,” in 34th European Solid-State Circuits Conference, Edinburgh, September 2008.
  • [4] M. Brownlee, P. Hanumolu, K. Mayaram, and U. Moon, “A 0.5-ghz to 2.5-ghz pll with fully differential supply regulated tuning,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2720-2728, 2006.
  • [5] Z. Cao, Y. Li, and S. Yan, “A 0.4 ps-rms-jitter 13 ghz ring-oscillator pll using phase-noise preamplification,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2079-2089, 2008.
  • [6] W. Jung, H. Choi, C. Jeong, K. Kim, W. Kim, H. Jeon, G. Koo, J.Seo, M. Ko, and J. Kim, “A 1.2mw 0.02mm2 2ghz current-controlled pll based on a self-biased voltage-to-current converter,” in IEEE International Solid-State Circuits Conference, San Francisco, February 2007.
  • [7] M. Mansuri and C. Yang, “A low-power adaptive bandwidth pll and clock buffer with supply-noise compensation,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 1804-1812, 2003.
  • [8] G. Yan, C. Ren, Z. Guo, Q. Ouyang, and Z. Chang, “A self-biased pll with current-mode filter for clock generation,” in IEEE International Solid-State Circuits Conference, San Francisco, February 2005.
  • [9] B. Razavi, Design of analog CMOS itegrated circuits. New York:McGraw Hill, 2001.
  • [10] J. Baker, CMOS circuit design, layout and simulation. New Jersey: IEEE Press, 2005.
  • [11] M. Mansuri, D. Liu, and C. Yang, “Fast frequency acquisition phasefrequency detectors for gsamples/s phase-locked loops,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1331-1334, 2002.
  • [12] B. Razavi, Monolithic phase-locked loops and clock recovery circuits. New York: IEEE Press, 1996.
  • [13] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered cmos circuits for gigaherz single-phase clocks,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 456-465, 1996.
  • [14] Jitter measurements using SpecreRF, Cadence Design Systems.
  • [15] A. Zaziabl, “Design of integrated phase-locked loop module in submicron process,” Master’s thesis, AGH University od Science and Technology, Cracow, Poland, June 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0046-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.