PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semantic Sparse Representation of Disease Patterns

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sparse data representation is discussed in a context of useful fundamentals led to semantic content description and extraction of information. Disease patterns as semantic information extracted from medical images were underlined because of discussed application of computer-aided diagnosis. Compressive sensing rules were adjusted to the requirements of diagnostic pattern recognition. Proposed methodology of sparse disease patterns considers accuracy of sparse representation to estimate target content for detailed analysis. Semantics of sparse representation were modeled by morphological content analysis. Subtle or hidden components were extracted and displayed to increase information completeness. Usefulness of sparsity was verified for computer-aided diagnosis of stroke based on brain CT scans. Implemented method was based on selective and sparse representation of subtle hypodensity to improve diagnosis. Visual expression of disease signatures was fixed to radiologist requirements, domain knowledge and experimental analysis issues. Diagnosis assistance suitability was proven by experimental subjective rating and automatic recognition.
Twórcy
  • Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland, arturp@ire.pw.edu.pl
Bibliografia
  • [1] N. Ancona, R. Maglietta, and E. Stella, “Data representation in kernel based learning machines,” in Proceedings of IASTED International Conference on Artificial Intelligence and Soft Computing, September 2004, pp. 129-136.
  • [2] A. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artificial Intelligence, vol. 97, pp. 245–271, 1997.
  • [3] J. Bobin, J.-L. Starck, J. M. Fadili, Y. Moudden, and D. L. Donoho, “Morphological component analysis: an adaptive thresholding strategy,” Image Processing, IEEE Transactions on, vol. 16, no. 11, pp. 2675-2681, 2007.
  • [4] E. J. Candés, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, 2006, pp. 1433-1452.
  • [5] E. J. Candés, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete curvelet transforms,” Technical Report, Cal Tech, Tech. Rep., 2005.
  • [6] R. A. DeVore, “Nonlinear approximation,” Acta Numerica, vol. 7, pp. 51-150, 1998.
  • [7] M. N. Do and M. Vetterli, “Contourlets,” in Beyond Wavelets, G. V. Welland, Ed. Academic Press, 2003.
  • [8] G. V. W. (editor), Beyond Wavelets, ser. Studies in Computational Mathematics. Academic Press, 2003, vol. 10.
  • [9] H. Fhr, L. Demaret, and F. Friedrich, “Beyond wavelets: new image representation paradigms,” in Document and Image Compression, M. Barni, Ed. CRC Press, 2006.
  • [10] L. Floridi, “In defense of the veridical nature of semantic information,” European Journal of Analytic Philosophy, vol. 3, pp. 31-41, 2007.
  • [11] M. Fornasier and H. Rauhut, “Iterative thresholding algorithms,” Applied and Computational Harmonic Analysis, vol. 25, no. 2, pp. 187-208, 2008.
  • [12] M. L. Giger, “Computer-aided diagnosis in medical imaging - a new era in image interpretation,” World Markets Research Centre, Tech. Rep., Tech. Rep., 2000.
  • [13] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “Algorithms for simultaneous sparse approximation. part i: Greedy pursuit,” Signal Processing, Special issue on sparse approximations in signal and image processing, vol. 86, pp. 572-588, 2006.
  • [14] R. C. Guido and J. C. P. (guest editors), “Wavelet-based algorithms for medical problems,” Computers in Biology and Medicine, Special issue, vol. 37, no. 4, 2007.
  • [15] S. K. Kinoshita, P. M. de Azevedo-Marquesand, R. R. Pereira, J. A. Rodrigues, and R. M. Rangayyan, “Content-based retrieval of mammograms using visual features related to breast density patterns,” Journal of Digital Imaging, vol. 20, no. 2, pp. 172-190, 2007.
  • [16] S. Mallat, A wavelet tour of signal processing, 2nd ed. Academic Press, 1999.
  • [17] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” Signal Processing, IEEE Transactions on, vol. 41, no. 12, pp. 3397-3415, 1993.
  • [18] G. Peyre, “Sparse modeling of textures,” Journal of Mathematical Imaging and Vision, vol. 34, no. 1, pp. 17-31, 2009.
  • [19] T. Podsiadly-Marczykowska and A. Guzik, “Mammography ontology, model structure, definitions and conception instances,” Bio-Algorithms and Medical Systems, vol. 1, no. 1, pp. 247-252, 2005.
  • [20] A. Przelaskowski, P. Bargiel, K. Sklinda, and E. Zwierzynska, “Ischemic stroke modeling: multiscale extraction of hypodense sign,” Lecture Notes in Artificial Intelligence, vol. 4482, pp. 171-181, 2007.
  • [21] A. Przelaskowski, K. Sklinda, G. Ostrek, R. Jozwiak, and J. Walecki, “Computer aided diagnosis in hyper-acute ischemic stroke,” in Progress in Neuroradiology 2009, J. Walecki, Ed. International Scientific Literature, 2009, pp. 69-78.
  • [22] J.-L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the combination of sparse representations and a variational approach,” Image Processing, IEEE Transactions on, vol. 14, no. 10, pp. 1570-1582, 2005.
  • [23] J.-L. Starck, F. Murthag, and J. M. Fadili, Sparse image and signal processing. Cambridge University Press, 2010.
  • [24] R. von Kummer, “The impact of computed tomography on acute stroke treatment,” in Thrombolytic therapy for stroke, P. Lyden, Ed. Humana Press, 2005, pp. 249-278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0046-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.