

Using JAIN SLEE as an Interaction and Policy

Manager for Enabler-based Services in Next

Generation Networks
Mosiuoa Tsietsi, Alfredo Terzoli, and George Wells

Abstract—The IP Multimedia Subsystem is a telecommuni-
cations framework with a standard architecture for the provi-
sion of services. While the services themselves have not been
standardised, standards do exist for basic technologies that can
be re-used and aggregated in order to construct more complex
services. These elements are called service capabilities by the
3GPP and service enablers by the OMA, both of which are
reputable standards bodies in this area. In order to provide
re-usability, there is a need to manage access to the service
capabilities. Also, in order to build complex services, there is a
further need to be able to manage and coordinate the interactions
that occur between service capabilities. The 3GPP and the OMA
have separately defined network entities that are responsible
for handling aspects of these requirements, and are known as
a service capability interaction manager (SCIM) and a policy
enforcer respectively. However, the internal structure of the
SCIM and the policy enforcer have not been standardised by
the relevant bodies. In addition, as the SCIM and the policy
enforcer have been defined through complementary yet separate
processes, there is an opportunity to unify efforts from both
bodies. This paper builds on work and standards defined by the
bodies, and proposes the design of an interaction manager with
features borrowed from both the SCIM and the policy enforcer.
To help validate the design, we have identified a platform known
as JAIN SLEE which we believe conforms to the model proposed,
and we discuss how JAIN SLEE can be used to implement our
ideas.

Keywords—Service broker, SCIM, policy enforcer, NGN, IMS,
JAIN SLEE, 3GPP, OMA.

I. INTRODUCTION

F IXED and mobile telecommunication operators have ex-

perienced falling revenues in recent years due to the

advent and rapid growth of relatively simple Internet-based

applications, some of which are available to consumers for

free. Service-oriented architectures such as the Internet Proto-

col Multimedia Subsystem (IMS) hold promise for reclaiming

these losses by enabling the deployment of rich, interactive,

multimedia services that consumers can access on a range of

different communication devices such as mobile phones and

PCs, and across different types of access networks such as 3G

and Wi-fi.

In their technical specifications, standards bodies such as the

3GPP (3rd Generation Partnership Project), ETSI (European

This work was undertaken in the Distributed Multimedia Center of Ex-
cellence at Rhodes University, with financial support from Telkom SA,
Comverse, Stortech, Tellabs, Amatole Telecom Services, Mars Technologies,
Bright Ideas 39 and THRIP.

M. Tsietsi, A. Terzoli, and G. Wells are with the Department of Com-
puter Science, Rhodes University, South Africa (e-mail: m.tsietsi@rucus.net;
{a.terzoli, g.wells}@ru.ac.za).

Telecommunications Standards Institute) and the OMA (Open

Mobile Alliance) have standardised architectures for the provi-

sion of services in an IMS network that includes the definition

of an Application Server (AS) that offers some form of value

added service. These bodies have been prudent enough not

to standardise the services themselves, a move that would

have stifled creativity among operators and vendors alike.

Rather, they have defined units of self-contained functionality,

or service building blocks, which can be re-used in service

applications.

In 3GPP and ETSI parlance, these functionalities are known

as service capabilities (SCs)[2], [10] whereas in the OMA,

they are called enablers. (We use the acronym SC and the term

enabler interchangeably in this paper, and more specifically

use SC to refer to 3GPP interpretations and enabler to refer

to OMA interpretations). The 3GPP has standardised some

SCs including presence, conferencing and messaging [4], [6],

[5]. The OMA, whose specifications for service enablers are

the most advanced and complete according to [12], has stan-

dards for presence, location and XML Document Management

(XDM) [17], [18], [16] among others. These SCs can be shared

between different ASs so that the same basic functionalities

are not duplicated needlessly. As self-contained functional

elements, these SCs can be grouped together in order to

compose larger, more complex services. For example, in [11],

the conceptual designs of a multimedia messaging service

(MMS) and a multi-party gaming service are described that

involve the use and combination of presence, conferencing

and messaging SCs.

The benefits of this form of service development as opposed

to the monolithic approach of inserting all the logic for a

service onto one node are clear. Since there is re-use of code,

application development can be quicker since the developer

has to worry less about the underlying mechanisms. Services

are also more efficient and code redundancy is eliminated.

These properties can have significant economic benefits for

operators who employ this approach to service deployment.

However, with the new opportunities that accrue, come new

challenges. Application developers must be able to discover

the capabilities of the network and what SCs are available

to them. Access to these SCs must be regulated and policies

must be put in place to allow the operator to grant and revoke

access to the SCs. Also, we need to solve the problem of

service invocation where SCs must be able to interact in order

to collectively provide a complex service to the users.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 2, PP. 117-124
Manuscript received January 15, 2009; revised June, 2010. 10.2478/v10177-010-0015-2

In section II we provide some background on typical service

invocation in the IMS. Sections III and IV introduce some of

the initial work towards defining the functional architecture of

an interaction manager and policy enforcer. In section VI we

present a novel architecture that borrows from 3GPP and OMA

standards. We proceed to interrogate this model in section VII

and in sections IX and X we identify a platform through which

we discuss how the model could be implemented using an

existing platform known as JAIN SLEE.

II. SERVICE INVOCATION IN THE IMS

The execution of a service in the IMS on behalf of a user

involves interplay between the Home Subscriber Server (HSS),

the Serving Call Session Control Function (S-CSCF) and the

Application Server (AS) [8]. When a user registers, the S-

CSCF downloads the user profile which contains the user’s

service profiles from the HSS. Each service profile contains

sets of initial filter criteria (iFC) which determine service

invocation. The iFCs specify service point triggers (SPTs)

which are criteria that must be met by a SIP request in order

for that request to be passed onto a particular AS. Thus, when

a service request arrives from a registered user to the S-CSCF,

the S-CSCF is responsible for evaluating the request against

the iFC in order to determine which AS the request should be

forwarded to.

This basic form of service handling can be referred to as

static service interaction management because it is based on

predefined and predictable rules and resolution information

[1]. While this type of service management is effective, it

is not suitable for cases where dynamic rules and conditions

must be applied for service handling. Examples of dynamic

conditions can be calendar events or some result which can

only be obtained at run-time. In addition, it is only effective

for trivial conditions where a single AS is to be invoked, but

is not sufficient for more complex services where multiple

SCs hosted on different ASs may be required in order to fully

realise an integrated service [21].

III. INTERACTION MANAGEMENT IN THE 3GPP

It was determined by the 3GPP that in order to orchestrate

complex services, an element would need to be defined that

would be responsible for co-ordinating the interactions be-

tween multiple SCs. The name that was given to this element

is a Service Capability Interaction Manager, or SCIM. In

the 3GPP technical specification on network architecture, the

SCIM is defined as an optional entity which performs the

role of interaction management between SCs, but its exact

behaviour was deemed to be outside of the standards [3].

In a subsequent technical report, the SCIM (referred to in

the report as a service broker) was investigated in order to

determine the impact of a SCIM on the overall IMS services

architecture [1]. The report found that there were shortcomings

in the current specification that would need to be revised for

proper SCIM integration, and also proposed some potential

layout models for where a SCIM would fit in the architecture

with regards to the services and control layers. The lack of

clarity from the perspective of the standards makes it difficult

Fig. 1. Architecture for interaction management by SCIMs.

to understand precisely the way in which the SCIM performs

its duty of interaction management, a role which may have far

reaching implications for telecommunication operators.

The crucial aspect to the insertion of a SCIM into the IMS

is procedural, and relates to how the SCIM interacts with other

entities, and the nature of the interfaces between those entities

and itself. In [11] and [20], four types of interactions have

been identified, which are reflected in Figure 1. Interaction 1

between the SCIM and the S-CSCF is implemented using the

IP Multimedia Service Control (ISC) interface, through which

the SCIM is able to download the user profile. Interaction

2 occurs between the SCIM and the SCs on the designated

ASs and also utilises the ISC interface, through which the

SCIM is able to perform its function of integrated service

invocation. Interaction 3 is between one SCIM and another

to allow SCIMs in one IMS domain to trigger SCs in another

IMS domain, though no protocol has been suggested that could

be used to achieve this purpose. Interaction 4 is between the

SCIM and the HSS through which the SCIM downloads and

updates interaction logic which is described next.

The study related in [1] proposes an interaction logic

between the SCIM and the SCs to perform dynamic service

interaction management. It proposes that if several SCs are

to be executed on different ASs, and the ordering of those

executions is dependent on the results of processing performed

by a previous SC in the chain, it should be possible to

provision these dynamic interaction rules in the SCIM. An

example would be the storage of conditional statements such

as the following:

1. If(ServiceA, Success) SKIP ServiceB

2. If(ServiceB, Failure) SKIP ServiceC

3. If(ServiceB, Failure) SKIP ServiceD

In the scenario above, the priority order (ServiceA, Ser-

viceB, ServiceC, ServiceD) is given, thus the integrated service

begins at ServiceA. If this service exits with a success code,

ServiceB can be skipped and the next service, ServiceC is

invoked. Otherwise, if a failure code results, ServiceB is

invoked. If a failure is in turn reported after ServiceB has

executed, SIP routing ends and control is returned to the

SCIM. Otherwise ServiceC and ServiceD are executed in

sequence.

M. TSIETSI, A. TERZOLI, G. WELLS118

Fig. 2. OSE Architecture elements. Adapted from [19].

IV. ENABLERS IN THE OMA/OSE

In the introduction we mentioned that the OMA has been

tauted as the standards body with the most complete and

advanced set of enabler specifications. While the OMA recog-

nises the need to develop basic building blocks for the de-

velopment of services, it also seeks to define these enablers

within the context of an overall architecture. Without it, the

deployment and use of enablers would be complicated and

expensive, and there would be high implementation cost for

services seeking to use several enablers. For this purpose, the

OMA has specified the OSE (OMA Service Environment) [19]

which is an abstract architecture that consists of elements

(including enablers) and the definition of the relationships

between those elements. Figure 2 shows the architecture of

the OSE.

In the OSE specification, an enabler is formally defined as

“a technology intended for use in the development, deployment

or operation of a Service; defined in a specification, or group

of specifications, published as a package by OMA”. The OSE

requires enablers to define interfaces through which they can

be accessed, allowing bindings such as web services, Java, or

C to be developed in a production environment. An execution

environment is also defined that allows the OSE to control

enablers by providing functions such as process monitoring

and software life-cycle management.

A notable element in the OSE is the policy enforcer. It

is the responsibility of the policy enforcer to apply poli-

cies that govern appropriate access to enablers as well as

to manage requests made to enablers for purposes such as

billing, logging or the enforcement of user preferences and

privacy. As the element with direct access to the enablers,

the policy enforcer is well placed for composing enablers

into higher level functions or complex services. It can also

interface with a discovery enabler in order for applications in

the home environment (HE) or outside the HE to discover

enablers. Though the OMA has gone to great lengths to

standardise enablers, there is no standard for a policy enforcer

enabler, though the OSE suggests OMA’s policy enforcement

and enforcement management (PEEM) enabler as a possible

stepping stone towards developing a policy enforcer enabler

[19].

V. CONSOLIDATING EFFORTS FROM 3GPP AND OMA

The material covered in the two preceding sections is exem-

plary of the potential for overlap between the standardisation

work of the 3GPP and the OMA. While the 3GPP is the

main driving force behind the evolution of the IMS, service

capabilities such as presence and XDM are also part of the

IMS. The OMA consists of players in the mobile services

domain, and are spearheading the specification of enablers

to be used in such contexts. However, the working groups

in the two bodies do work together where there is scope for

collaboration. It is generally agreed that the role of the OMA

will be to generate requirements for the IMS and for the 3GPP

to extend the IMS to meet these requirements [9].

However, there is an opportunity that we have identified that

has not fully been taken advantage of by the two bodies in their

efforts towards providing an architecture that makes extensive

use of SCs for application services. The 3GPP has solved part

of the problem by introducing a SCIM between the S-CSCF

and the ASs, and by proposing a draft interaction management

scheme based on building a history of SC invocations. The

OMA has also solved part of the problem by introducing a

policy enforcer into their OSE that handles authorisation and

discovery of enablers by HE and third party services. What

is needed is a model that consolidates both sets of work

to provide a powerful, standards-based service interaction

manager for an enabler-driven IMS network. The proposal

borrows from the contributions from both the 3GPP and the

OMA and is summarised in Figure 3. For simplicity, only those

interfaces that have undergone modifications since Figure 1 are

labeled.

VI. PROPOSED ARCHITECTURE

In Figure 1 what stands out the most is that the SCs

are no longer embedded in the ASs. This bold move is

motivated by two main reasons. Firstly, if the SCs are co-

located with the ASs, it is not possible to provide the attractive

feature of enforcing policies on AS access to SCs. Secondly,

Fig. 3. Proposed architecture.

USING JAIN SLEE AS AN INTERACTION AND POLICY MANAGER FOR ENABLER-BASED SERVICES IN NEXT GENERATION NETWORKS . . 119

it provides the freedom to use services without having to

bind development to specific enablers. This will also allow

us to provide the feature of dynamic discovery of SCs in the

network.

A. Interface between the SCIM and the SCs (Interface 2)

SCs are provisioned by the network operators. When a new

SC is inserted, it must advertise its existence to the SCIM.

While some enablers will be SIP based such as presence, some

enablers will not be, such as XDM. As such, the ISC interface

between the SC and the SCIM will not necessarily be SIP,

a design option which is sanctioned by 3GPP specifications

[7]. Various standard Internet protocols can be used here,

depending on the nature of the SC. There are bindings that the

SCIM uses to interact with the SCs. The SCs must advertise

these bindings to the SCIM. If the SC wishes to request

special policies for its access, it uses the same interface to

communicate these. Otherwise, when the SC has registered

with the SCIM, the SCIM can assign a default policy for those

that have no special requirements.

B. Interface between the AS and the SCIM (Interface 1)

Between the AS and the SCIM, the ISC is still in effect,

however its behaviour is also subject to modifications in our

design. Since we have removed SCs, ASs would be interested

in discovering underlying enablers in the network. This will

help inform application development, allowing the developer

to know what is available and what enablers the application

will have access to during execution. The AS makes a dis-

covery request over the ISC and the SCIM must evaluate this

request against the policy framework. Note that unlike in the

OSE, which has opted for a discovery enabler to assist in

this process, this role in our design if fulfilled by the SCIM

itself. The rationale behind this is that is simplifies the overall

process since enablers are registering with the SCIM, thus it

has information regarding all embedded enablers and enforces

policies governing not only discovery of those enablers but

their access and use. Whether the SCIM authorises the request

or not, the ISC is used to communicate the response. The ISC

interface would also be used to remove and request additional

enablers to be accessed by the AS. These requests would also

be subject to policies in the SCIM.

C. Interface between the HE SCIM and a remote SCIM

(Interface 3)

When a SCIM from another network tries to perform service

orchestration with enablers in another domain, the SCIM in the

HE must be responsible for authorising that SCIM to discover

and interact with the enablers. The interaction between the

remote SCIM is similar to that of the HE SCIM and an AS in

the home environment. It is possible however that policies that

will be enforced in this case will be more stringent, and must

certainly be affected by additional policies related to SLAs

that may exist between the two domains.

VII. SERVICE ORCHESTRATION

In addition to defining interfaces between the elements in

the architecture, our design also defines a service orchestration

model for the SCIM. Section III related a mechanism through

which service chains are defined and dynamic conditions are

evaluated in order to determine the next SC to be invoked.

The mechanism that is proposed here is largely based on

this mechanism, but takes into consideration some of the

extensions that have been proposed in the previous section.

When a request is received by the SCIM from the S-CSCF,

the SCIM examines the request against iFC from the user

profile over the Cx interface and forwards the request to the

relevant AS. The AS contains the logic for executing a task

and uses the ISC application level interface to communicate

with the SCIM on how to execute the service. When the

SCIM receives a request from the AS, it examines the request

and translates it into a service chain of enablers which must

then be invoked in order to complete the task. Much like the

3GPP model, after each invocation, the SCIM can use dynamic

values and non-SIP information to inform the next SC to be

invoked, while communicating to the AS whenever needed.

The AS in turn will also communicate back to the client in

order to deliver the required functionality.

VIII. IDENTIFYING A TARGET PLATFORM

In creating the model we have outlined, we are contributing

new ideas to an area in telecommunications and service

development that is in need of further investigation. Moreover,

we are spurred on by the open research questions regarding

interaction and policy management. As an initial step towards

identifying a target platform in which to test our ideas, our

attention was drawn to a Java platform called JAIN SLEE.

It seemed to provide some of the functionalities that are

required to implement a SCIM and realise the interfaces that

a SCIM would need to have. In the next section we explore

the architecture of JAIN SLEE and will highlight the reasons

why we have selected it as a possible starting point towards

developing a SCIM for IMS. It is important to note that

we are not identifying JAIN SLEE as a generic environment

for service orchestration as it is more suited to managing

applications in a JAIN SLEE environment, but it does conform

to our model and lessons can be drawn from it.

IX. JAIN SLEE

The JAIN Service Logic and Execution Environment (JAIN

SLEE) is a Java architecture that has been standardised through

the Java Community Process [13]. It defines a component

model for structuring applications through re-usable object

oriented components. JAIN itself refers to Java APIs for

Integrated Networks, and represents an initiative to provide

Java APIs for commonly used IP protocols, the aim of which

is to integrate these protocols to enable converged services.

JAIN SLEE utilises this concept to its benefit by allowing

applications to use interfaces defined by JAIN APIs, as well

as non-JAIN Java APIs [14].

In order to interact with external resources such as protocol

stacks, network devices and databases, JAIN SLEE defines

M. TSIETSI, A. TERZOLI, G. WELLS120

Fig. 4. JAIN SLEE Component Model.

resource adapters which adapt the protocol messages into an

appropriate format that can be handled by the SLEE. The

reusable object oriented components are known as Service

Building Blocks (SBBs) and form the basis for service provi-

sioning. SBBs possess event handlers for each type of event

they are interested in receiving. This is how converged services

are enabled since an SBB can register interest in numerous

types of events that are associated with different protocols.

As an event-driven architecture, JAIN SLEE has a single,

logical event handler known as an event router. The event

router receives events from event producers such as resource

adapters and delivers them to event consumers such as SBBs.

Trace, Alarm, Timer and other facilities are defined which also

generate events that the SBBs can register for. As an example,

an alarm clock SBB can receive events from the Timer facility

in order to notify it when a Timer has expired so it can wake

someone up. Figure 4 shows the architecture of JAIN SLEE.

SBBs in a SLEE can be likened to SCs in an IMS services

environment. SBBs are also attractive in that they can provide

multimedia services using JAIN and non-JAIN interfaces.

In addition, the event generation, subscription and delivery

mechanisms performed by the logical event router in the

SLEE bear resemblance to the service integration function of

a SCIM, which in essence delivers events to SCs according to

some order and receives events from them. The next section

elaborates more on the inner workings of the SLEE and maps

these functions to the service integration requirements of a

SCIM for IMS.

X. JAIN SLEE AS AN INTERACTION MANAGER

In this section, we will revisit the interfaces introduced in

section VI to provide answers as to how JAIN SLEE can

implement the needed interfaces of a SCIM.

A. Interface between the SCIM and the S-CSCF

For the ISC interface between the SCIM and the S-CSCF,

JAIN defines an API for SIP known as JAIN SIP and as such,

a JAIN SIP resource adapter could be used for this purpose.

The JAIN SLEE specification, anticipating the popularity of

this protocol, defines a recommended adaptation of a JAIN

SIP v1.1 resource to the SLEE. It is also this SIP functionality

which would allow for the parsing of SIP events in order to

match against iFC for a particular service.

Fig. 5. SBB Graph example.

B. Interface between the SCIM and the SCs

For the SCIM to invoke a service, it has to be aware of the

SCs involved in the composition of the service. Referring to

work proposed by [20], it is possible to arrange SBBs in an

hierarchical tree formation, with a root SBB behaving as a core

SC (CSC). A root SBB can be associated with one or more

child SBBs which would each fulfill the role of an auxiliary

SC (ASC). JAIN SLEE defines an initial event as one that can

cause the root SBB of a service to become instantiated. Thus

a SIP INVITE message for example, can be used as an initial

event for the instantiation of the CSC of a service.

JAIN SLEE uses an event delivery priority model in order

to pass events from one SBB to another. When the root SBB

is done performing some application logic based on the event,

it passes control back to the SLEE which will use this priority

model to relay the event to the next appropriate child SBB. The

priorities are set for each child SBB by the service developer

and must be integers in the range (-128, 127). Child SBBs with

a higher positive event priority receive the events first, while

those with a lower or negative event priority will receive the

event later. SLEE implementations are allowed to determine

the behaviour of the SLEE when the same priority is assigned

to two or more vertices in the tree. Figure 5 illustrates the

root SBB invocation and event delivery priority model of JAIN

SLEE.

This event delivery priority model is similar to static service

interaction management for SCIMs that has been defined,

however it is possible to enable dynamic service interaction in

JAIN SLEE as well. Firstly, JAIN SLEE defines an API for

manipulating the priorities associated with child SBBs. Getter

and setter methods exist which can be used for this purpose.

Thus, if a root SBB is executing and a dynamic condition

necessitates it, it can change the priorities associated with its

children so that a different child SBB is invoked than the one

that would have been had static rules been followed.

Each resource adapter, such as a JAIN SIP resource adapter,

is capable of creating an entity known as an Activity Context.

This can be used to store attributes which multiple SBBs can

share, read and update at run-time. If an SBB can read the

value of a shared attribute, and in certain conditions update

that value, dynamic service interaction can be enabled. Instead

of relying on an hierarchical, priority based model, we can

flatten the interaction model and set a common priority to all

USING JAIN SLEE AS AN INTERACTION AND POLICY MANAGER FOR ENABLER-BASED SERVICES IN NEXT GENERATION NETWORKS . . 121

Fig. 6. Service chaining for dynamic interaction management.

SBBs involved in a service. Since SBBs can attach themselves

to Activity Contexts, the Activity Context can behave as an

event channel on which an SBB can fire an event and it will in

turn distribute events to other SBBs that are also attached to

it. When the event arrives at a particular SBB, that SBB can

evaluate the shared attribute, and then decide if it processes

it, or passes the event onwards.

Figure 6 illustrates this type of interaction, where three

SBBs are involved in a service, each of which is attached to the

same Activity Context. If SBB X receives the event, it sets the

shared attribute to reflect that it has modified it. When another

SBB, say SBB Y receives the event, it can examine the shared

attribute and decide if it will process the event further, or return

control to the SLEE. The same applies to SBB Z. Thus both

static and dynamic service capability interaction management

can successfully be performed using JAIN SLEE due to its

support for service capability prioritisation and management

of shared attributes.

In terms of policy management between the SCIM and

the SCs, we make note of the suggestion by the OMA

in their PEEM enabler specification to use protocols such

as XDM, FTP or SIP presence mechanisms [15]. All three

of these protocols however could equally be supported by

providing the appropriate JAIN resource adapters for them.

As an XDM agent, JAIN SLEE would allow the definition

of XML application usages for policies. The XCAP protocol

which is used to address segments of an XML document would

be used for the management of these policies. FTP would

assist in the uploading, replacing and deletion of policies in

file format in the SLEE. A JAIN SIP resource adapter would

be used in the SIP case, where presence events would be used

as an extra channel for SCs to manage and subscribe to XDM-

based policies.

C. Interface between the AS and the SCIM

Between the AS and the SCIM we propose the same

approach as between the SCIM and the S-CSCF of imple-

menting the ISC using the JAIN SIP adapter. If the AS were

interested in querying the SLEE for policies using for example

XCAP requests, JAIN SLEE would be able to provide such

information in an XCAP response by evaluating XML files

created for enablers.

D. Interface between the HE SCIM and remote SCIM

Between the HE SCIM and a remote SCIM we propose

the same approach as between the SCIM and the S-CSCF of

implementing the ISC using the JAIN SIP adapter. In a similar

manner to above, the SCIM from the remote domain could also

use XCAP requests to query policies on enablers.

XI. CONCLUSION

In this paper, we have presented a services architecture

for NGNs and the functional design of a service broker in

this context. We have compared the efforts of organisations

such as the 3GPP and the OMA and identified the similarities

between the two. We have used work from them to present

a possible enabler-based services architecture using current

standards wherever possible. Implementation concerns such

as privacy and user preferences have been catered for in this

architecture by defining a policy function in the SCIM. In an

effort towards testing our ideas, we have mapped the interfaces

and functions of the SCIM to a practical platform, namely

JAIN SLEE, and shown how it can be used to implement

the model we have presented. Future work will focus on the

use of JAIN SLEE to implement the functions defined, which

will help inform and validate our design, which may lead to

modifications and extensions to the work discussed here.

REFERENCES

[1] 3GPP, “TR 23.810: Study on architecture impacts of service brokering
- Release 8,” 3GPP, Tech. Rep. TR23.002v8.0.0, September 2008,
http://www.3gpp.org/ftp/Specs/archive/23 series/23.810/.

[2] ——, “TS 22.105: Services and Service Capabilities - Release 9,” De-
cember 2008, http://www.3gpp.org/ftp/Specs/archive/22 series/22.105/.

[3] ——, “TS 23.002: Network Architecture - Release 8,” December 2008,
http://www.3gpp.org/ftp/Specs/archive/23 series/23.002/.

[4] ——, “TS 24.141: Presence service using the IP Multimedia (IM)
Core Network (CN) subsystem - Release 8,” December 2008,
http://www.3gpp.org/ftp/Specs/archive/24 series/24.141/.

[5] ——, “TS 24.147: Conferencing service using the IP Multimedia
(IM) Core Network (CN) subsystem - Release 8,” December 2008,
http://www.3gpp.org/ftp/Specs/archive/24 series/24.147/.

[6] ——, “TS 24.247: Messaging service using the IP Multimedia
(IM) Core Network (CN) subsystem - Release 8,” December 2008,
http://www.3gpp.org/ftp/Specs/archive/24 series/24.247/.

[7] ——, “TS 23.228: IP Multimedia Subsys-
tem; Stage 2 - Release 9,” September 2009,
http://www.3gpp.org/ftp/Specs/archive/23 series/23.228/.

[8] ——, “TS 29.228: IP Multimedia Subsystem Cx and Dx interfaces;
Signalling flows and message contents - Release 8,” March 2009,
http://www.3gpp.org/ftp/Specs/archive/29 series/29.228/.

[9] G. Camarillo and M. Garcia-Martin, The 3G IP Multimedia Subsystem

(IMS). CRC Press, 2008.
[10] ETSI TISPAN, “TR 181.004: NGN generic capabilities and their use to

develop services,” ETSI TISPAN, Tech. Rep. TR181.004v1.1.1, March
2006.

[11] A. Gouya, N. Crespi, and E. Bertin, “SCIM (Service Capability Inter-
action Manager) implementation issues in IMS service architecture,” in
ICC ’06: IEEE International Conference on Communications. IEEE,
June 2006, pp. 1748–1753.

[12] M. Ilyas and S. Ahson, IP Multimedia Subsystem (IMS) handbook. CRC
Press, 2009.

[13] JCP, “JSR 22: JAIN Service Logic Execution Environment API Speci-
fication,” Available Online, http://jcp.org/en/jsr/detail?id=22.

[14] S. B. Lim and D. Ferry, “JAIN SLEE 1.0 spec-
ification, Final Release,” Avaliable Online, 2004,
http://jcp.org/aboutJava/communityprocess/final/jsr022/ind- ex.html.

[15] OMA, “Policy Evaluation, Enforcement and Management
Architecture - Candidate Version 1.0,” August 2008,
http://www.openmobilealliance.org/Technical/release program/peem v1
0.aspx.

M. TSIETSI, A. TERZOLI, G. WELLS122

[16] ——, “Enabler Release Definition for Lo-
cation in SIP/IP Core,” August 2009,
http://www.openmobilealliance.org/technical/release program/locsip v1

0.aspx.
[17] ——, “Enabler Release Definition for

OMA Presence SIMPLE,” September 2009,
http://www.openmobilealliance.org/technical/release program/Presence
simple V2 0.aspx.

[18] ——, “Enabler Release Definition for XML
Document Management,” August 2009,
http://www.openmobilealliance.org/Technical/release program/XDM v2

0.aspx.

[19] ——, “OMA Service Environment- ap-
proved version 1.0.5,” October 2009,
http://www.openmobilealliance.org/technical/release program/ose v1 0
.aspx.

[20] Y. Wang, K. Yangi, R. Li, and L. Zhang, “An improved SCIM-
based service invocation mechanism for integrated services in IMS,”
in Mobility ’08: Proceedings of the International Conference on Mobile

Technology, Applications, and Systems. New York, NY, USA: ACM,
2008, pp. 1–5.

[21] N. Xia and W. J. Zhai, “Study on the IMS service broker,” in ICCIT ’08:

Third International Conference on Convergence and Hybrid Information

Technology. IEEE, November 2008, pp. 340–343.

USING JAIN SLEE AS AN INTERACTION AND POLICY MANAGER FOR ENABLER-BASED SERVICES IN NEXT GENERATION NETWORKS . . 123

