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The paper focuses special attention on research of Complex Networks. Complex Networks have Scale Free
and Small Word features, what make them accurate model of many networks such as social networks. These
features, which appear to be very efficient for communication networks, favor at the same time the spreading

of many diseases.

Based on defined centrality measures, we show how to discover the critical elements of any network. The
identification and then vaccination of the critical elements of a given network should be the first concern in

order to reduce the consequence of epidemics.
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1. Definition and notation

Complex Networks are commonly modeled by
means of simply or directed graphs that consist
of sets of nodes representing the objects under
investigation, joined together in pairs by links if
the corresponding nodes are related by some
kind of relationship.

Formally graph is a vector G=<V,E,P> where:
is a set of vertices, F is a set of edges, and P is
an incident relation e.g. PCV x E x V.

The degree k; of a vertex v; is the number of
edges originating from or ending in vertex v;.
The shortest path length d; is an alternating
sequence of nodes and links, starting and ending
with a node. The length of a path is defined as
the number of links in it. Now we can define
diameter D as the shortest longest path e.g. max {
d;}. Networks very often are represented by a
matrix called the adjacency matrix A, which in
the simplest case is an n X n symmetric matrix,
where 7 is the number of vertices in the network.
Element of adjacency matrix 4,=1, if there is an
edge between vertices i and j, and 0 otherwise.

In some cases the use of graph to represent
Complex Networks does not provide a complete
description of the real-world systems under
investigation. For instance, if contacts in social
networks are represented as a simple graph, we
only know whether individuals are connected,
but we cannot model strength of these
connection. However, for further consideration,
we temporally use only formal graph definition.

2. Networks generators

In 1960 Erdés and Rényi [1] described their
investigations of random graphs. Assuming
equally probable and independent random
connections made between any pair of vertices
in initially not connected graph, they derived
a model suffering unrealistically topology.
Because of that their model had limited usage
for modeling real life social network,
nevertheless they proved a number of interesting
result about random graphs. There are a few
models of random graphs, some of them we have
implemented.

Identifying and measuring properties of
a Social Networks is a first step towards
understand their topology, structure and
dynamics. The next step is to develop
a mathematical model, which typically takes
a form of an algorithm for generating networks
with the same statistical properties. Apparently,
networks derived from real data (most often
spontaneously growing) have “six degree of
separation”, power low degree distributions,
hubs occurring, tendency to form clusters and
many other interesting features. Two very
interesting models capture these feature, have
been introduced recently.

First, Watts and Strogatz in 1998 [2] deal
with mentioned features by a strategy that seems
perfectly obvious once someone else has thought
of it. They interpolate between two known
models. They begin with regular lattice, such as
a ring, and then ‘rewire’ some of the edges to
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introduce randomness. If all edges are rewired a
random graph appears. The process of rewiring
effects not only the average path length but also
clustering coefficient. Both of them decrease as
probability of rewiring increases. The striking
features of this procedure is that for relatively
wide range of rewiring probability the average
path length is already low while clustering
coefficient remains high. It is called Small World
model, more precisely Beta-model of Small
World network. Because Beta-model exists so
there is also Alfa-model of Small World
network. This model try to capture, of course in
some abstract sense, the authentic/real way of
social connections formation. What is surprising
is not that real Social Networks are Small World
but that people are able to find the shortest path
between each other so easily. Kleinberg [3]
explained it using his own model of Small World
networks.

Second, Barabasi and Albert in 1999 [4]
introduced their model of networks as a result of
two main assumption: constant growth and
preferential attachment. They expressed the
degree sequence — the number of vertices with
each possible number of edges. They show why
the distribution of degrees is describe by a power
low. The process of network generation is quite
simple. The network grows gradually, and when
a new node is added, it creates links to the
existing nodes with probability proportional to
their connectivity. In this way, high connected
individuals receive more new links than low
connected ones, and hence, ‘old’ nodes are more
connected than ‘young’ ones. It is called Scale
Free model. The process of Scale Free networks
generation has many modifications [9].

3. Centrality measures

We start the analysis of epidemic spreading by
introducing centrality measures [8], which are
the most fundament and frequency used
measures of network structure. The central
vertices in Complex Networks are of particular
interest because they might play the role of
organization hubs. Centrality measures address
the question “Who (what) is the most important
or central person (node) in given social
network?”. No single measure of center is suited
for all application. Based on defined centrality
measures, we show how to discover the critical
clements of any network so-called “super-
spreaders” of a disease.

When a vaccination for a disease exist,
immunizing certain individuals against being
infected by a disease may be the most efficient
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way to prevent loss of time and founds due to
the disease. Obviously, immunization of the
entire population will eradicate the disease
entirely, but this is not always possible, or may
involve high cost and effort. Therefore, the
choice of which individuals to immune is an
important step in the immunization process, and
may increase the efficiency of the immunization
strategy. So the identification and then
vaccination of the critical elements of a given
network should be the first concern in order to
reduce the consequence of epidemics.

We considered five most important
centrality measures e.g. degree (gives the highest
score of influence to the vertex with the largest
number of first neighbors), radius (chooses the
vertex with the smallest value of shortest longest
path starting in each vertex so if we need to find
the most influential node for the most remote
nodes it is quite natural and easy to use this
measure), closeness (focuses on the idea of
communications between different vertices and
the vertex which is ‘closer’ to all vertices gets
the highest score), betweenness (it can be
defined as the percent of shortest paths
connecting any two vertices that pass through
consider vertex) and eigenvector (acknowledges
that not all connections are equal so connections
to people who are themselves influential will
lend a person more influence than connections to
less influence people). Two of these measure
will be presented in details.

4. Degree centrality

The simplest of centrality measures is degree
centrality, also called simply degree. The degree
centrality is traditionally defined analogous to
the degree of a vertex, normalized over the
maximum number of neighbors this vertex could
have. This agrees with the intuitive way to
estimate someone’s influence from the size of
his immediate environment. Thus, in a network
of n vertices, the degree centrality of vertex v;, is

defined as:
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The normalization in the region [0, 1] is used
here to make the centrality of different vertices
comparable, and also independent of the size of
the network.

S. Betweenness centrality
This measure assumes that the greater number of

paths in which a vertex participates, the higher
the importance of this vertex for the network is.
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Betweenness centrality refines the concept of
communications, introduced in closeness
centrality.

Informally, betweenness centrality of a
vertex can be defined as the percent of shortest
paths connecting any two vertices that pass
through that vertex. If gy (L) is the set of all
shortest paths between vertices v; and v, passing
through vertex v; and @, (absence L) is the set
of all shortest paths between vertices v, and vy
not including v;, then:
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The normalized version divides this value with
the maximum possible betweenness centrality,
that is all possible shortest paths in a completely
connected graph.
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This definition of centrality explores the ability
of a wvertex to be ‘irreplaceable’ in the
communication of two random vertices. It is of
particular interest in the study of network
immunization, because at any given time the
removal of the maximum betwenness vertex
seems to cause maximum damage in terms of
connectivity and mean distance in the network.
Its main disadvantages is that the summation
operator practically means that it needs global
information about the network, in order to
compute the betweenness of a single vertex, and
that is simply not possible in many contexts. For
the same reason it is expensive in computing
time to compute the score of a vertex, although
this disadvantage was significant improved
recently.

6. Connection efficiency

To evaluate how well a network is connected
before and after the removal of a set of nodes we
use the global connection efficiency (GCE), a
measure introduced by Latora and Marchiori [7].
We assume that the connection -efficiency
between vertex v; and v; is inversely proportional
to the shortest distance:
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When there is no path In the graph between
vertex v; and v; we have d; = infinity and

consequently connection efficiency is equal
zero. The global connection efficiently is defined

as the average of the connection efficiency over

all couples of nodes.
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Unlike the average path length, the global
connection efficiency is well-defined quantity
also for non-connected graph.

7. How to stop disease without full
knowledge about network

When vaccine supplies for a deadly (serious,
common) disease are limited, whom should
health workers target? Our strategies for
vaccination with limited resources suggests that
the “super-spreaders” should be immunized. But
how these individuals can be reached without
knowing who they are in advanced? We know
how and we believe we can do it!

Many researches in Social Networks show that
human contacts have Scale Free feature, what
was mentioned earlier. In consequence most of
the individuals have only a few links to others,
while a few individuals have a very large
number of contacts. These features, which
appear to be very efficient for communication
networks, favor at the same time the spreading
of many diseases [6]. What now... if one of
these highly connected individuals in a human
population become infected, he becomes
a “super-spreader” infecting all of his numerous
neighbors and distributing the disease very fast.
This suggests a deceptively simple solution like
immunizing all the “super-spreaders” in
a network of human contacts slows or even stops
the spread. Unfortunately, it is rarely obvious
which individuals have many contacts. Pecople
infrequently know exactly how many contacts
they have and sometimes they lie, particularly
about sensitive subject like number of sexual
partners.

{ [ 1"super-spreaders" TL

T common individuals

Fig. 1. Importance of “super-spreaders”
identification. If we vaccinate the “super-spreaders”
e.g. with highest degree, the network rapidly
disintegrates and we stop disease spreading
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Random immunization is almost useless because
Scale Free networks remain connected even
after up to 80% of their all nodes are removed
(immunized or isolated). So almost whole
population must be vaccinated to prevent the
disecase’s spread. The word “randomly” is the
keyword here. Any smart attacks i.e aimed at
“super-spreader”  disintegrate the network
rapidly.

RANDOM TARGET

Fig. 2. Two most popular vaccination strategy

What does it mean smart if we do not know who
the “super-spreaders” are and/or where can we
find them? We can do it just put in a simple
modification of random vaccination that is much
more effective, according to our computer
simulation and based on new concept introduced
in [10, 11] with few modification.

VACCINATE THE NEIGHBOR

Fig. 3. New vaccination strategy very effective
even the knowledge about network topology is
uncertain and incomplete

The idea is to randomly choose, say, 20% of the
individuals and ask them to fill out our special
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questionnaires. One of the most important
question in all forms for any disease is to name
at least one acquaintance/friend/boy/colleague
etc., then vaccinate those identified individuals.
Potential “super-spreaders” have such a large
number of contacts that they are very likely to be
named at least once. On the other hand, the
“super-spreaders” are so few in number that the
random sample of individuals is unlikely to
include many of them. Using this vaccination
strategy, a disease can be stopped by vaccinating
less than 20% of the individuals. If a larger
sample is asked for names, or those named twice
are vaccinated the total number of vaccinations
required can be even lower. We could modify
this basic method in many ways and adopt it to
specific virus.

—— random vaccination
—— degree centrality vaccination
——vaccinate thy neighbor

100% T

90% -
80%
70% T

60% -
50%
40%
30%

20% __/’_\

% of nodes that must be vaccinated

The power of Scale Free network

Fig. 4. The effect of three vaccination strategy in
case Scale Free networks with different power

8. Summary

Presenting idea is a new attempt at
integrating theories and practices from many
area, in particular: social networks, graph
and network theory, decision theory, data
mining and security. It utilizes that
theoretical basis for very practical purpose
of growing importance and demand: widely
understood countering high contagious
diseases like HIV/AIDS, SARS and others.
Our work have enormous practical potential
in region such as Africa, where there are not
enough medicine to treat all who are at risk
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