
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 2 21-29 (2008)

 21

Simulation efficiency analysis method

of Java Enterprise Edition application

T. GÓRSKI
gorski@wat.edu.pl, tomasz.gorski@rightsolution.pl

Institute of Information Systems

Cybernetics Faculty, Military University of Technology
Kaliskiego Str. 2, 00-908 Warsaw

--

In this article efficiency analysis method of Java EE applications was presented. Efficiency’s measures of such
kind of applications were described. Furthermore, discrete-event simulation modelling method Event Graph and
its extension LEGOS were presented as well. Moreover, model of Java EE application was presented. An
implementation of proposed model in Java and SimKit package was presented. In the paper, a project of
simulation application was also described. The article encompasses description of simulation experiment used in
efficiency analysis of Java EE application and example of results from such experiment.
--

Keywords: software engineering, simulation, enterprise applications, performance

1. Architecture of Java EE application

An application is called package of software with
interface by which user gets access to
functionality offered by this package [1]. An
internet application we can define as a dynamic
set of various software components deployed on
application server which use different resources
(e.g. database) due to deliver services via WWW
infrastructure [1]. The main advantage of this
kind of application is access to application logic
through Internet browser. So, there is no need to
install software on client computer (only Internet
browser). Moreover, changes in application logic
do not require changes on client machine.
Practically, all business logic is located on
application server. In the picture Pic.1 pattern of
client’s request realization is presented in model
request-response in architecture Java Enterprise
Edition (Java EE).

Pic.1. Service of client’s request in Java EE
architecture [2]

In Java EE architecture fundamental

architectural pattern is Model-View-Controller
(MVC). Main tasks of Model components are
realization of business processes and
communication with database. Services offered
by this layer are used by two other layers:
View and Controller. Model is independent
from View and Controller. View components
are responsible for model visualisation. They
dynamically generate html documents with
content provided by Model, which are sent to
client. Components of the third layer –
Controller – are responsible for service of
client actions. They are responsible for
receiving client requests and service realization
by invoking appropriate services, offered by
Model and View components.

In MVC architectural pattern we can
distinguish following layers: Client, Controller,
View, Model, Data [2, 3]. In the picture Pic.2
client request realization in MVC pattern is
depicted: 1. Client request; 2. Change of
Model state; 3. Request to database; 4. Objects
creation for data transfer; 5. Invoking JSP
page; 6. Reading data from data objects; 7.
Results presentation to client.

In this paper, it was assumed that the main
object of modelling and conducting efficiency
analysis is Internet application in architecture
Java EE.

T. GÓRSKI, Simulation efficiency analysis method of Java EE application

 22

Pic.2. Client’s request realization in MVC [2]

2. Efficiency measures of Java EE

application

The main issue in the paper is efficiency of
appropriate execution of Java EE application
functionality. Following measures were used to
analyse efficiency of Java EE application:
• Response time – this is a time between arrival

of request to application server and beginning
of sending application response to client,

• Throughput – this is a number of requests,
which application realizes in time unit,

• Utilization of memory – this is percentage
value of used memory in specified period of
time.

3. Event Graph and LEGOS methods

Event Graph methodology is a way of presenting
discrete-event simulation models in a simple and
elegant language-independent manner. The
methodology uses graph which represents events
occurring in modelled system and their
relationships.

An Event Graph consists of nodes and
directed edges. Each node corresponds to an
event, or state transition, and each edge
corresponds to the scheduling of other events.
Each edge can optionally have an associated
Boolean condition and/or a time delay.

Picture Pic.3 shows the fundamental
notation for Event Graphs and is interpreted as
follows: the occurrence of Event A causes Event
B to be scheduled after a time delay of t,
providing condition (i) is true (after the state
transitions for Event A have been performed). By
convention, the time delay t is indicated toward
the tail of the scheduling edge and the edge
condition is shown just above the wavy line
through the middle of the edge. If there is no time

delay, then t is omitted. Similarly, if Event B is
always scheduled following the occurrence of
Event B, then the edge condition is omitted,
and the edge is called an unconditional edge.
Thus, the basic Event Graph paradigm contains
only two elements: the event node and the
scheduling edge with two options on the edges
(time delay and edge condition).

Pic.3. Event addition to list of events in Event
Graph [5]

Second type of edge (Pic. 4) is represented by
dashed line and means: occurrence of event A
will cause deletion from event list the first
occurrence of event B (if exists on the list), if
condition i is true.

Pic.4 . Event deletion from event list in Event

Graph [5]

The special type of event in Event Graph is
Run. The Run event is placed on the Event List
at time 0.0 but is otherwise an ordinary event
with associated state transitions and scheduling
edges. The aim of this event is starting
simulation. Picture Pic.5 shows arrival process
model with Run event.

Pic.5. Arrival process model in Event Graph [6]

Run event simply initializes cumulative
number of arrivals (N) to 0 and schedules the
first arrival. The state transition for the Arrival
event is that the cumulative number of arrivals
(N) is incremented by 1.
The important extension of Basic Event Graph
is the ability to pass parameters on edges to
event nodes. This is presented in picture Pic.6
for both scheduling and cancelling edges.

Pic. 6. Edges with parameters in Event Graph [6]

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 2 21-29 (2008)

 23

The interpretation of the constructs in the picture
Pic.6 is as follows. For the scheduling edge with
parameter: when Event A occurs then, if
condition (i) is true, event B is scheduled to occur
after a delay of t time units; when B occurs, its
parameter k will be set to the value given by the
expression j. For the cancelling edge with
parameter: when event A occurs then, if condition
(i) is true, the first scheduled event of type B
whose parameter k exactly matches j is removed;
if no such event is found, then nothing happens;
when event B occurs, the value of expression j is
that which it had when the scheduling event A
occurred.

Listener Event Graph Objects (LEGOS) [7]
are fundamentally Event Graphs, but have two
simple, but important, additions. The first of
these is encapsulation, and the second is the
listener pattern.

An Event Graph which represents self-
contained functionality can be encapsulated to
create an Event Graph object, which can
subsequently be treated as an atomic component
in other models. Those components can be
combined to create more complicated models.
This hierarchical approach assures high
scalability of created models.

Listener pattern provides capability of
connecting components without need of changing
inner structure of those components [3, 9].

In practice we need at least two modules to
show capabilities offered by LEGOS. We will
use considered earlier arrival process model as
the first of them (Pic.7).

Pic.7. Module LEGOS of arrival process model [7]

As the second module is multi-server queue
model with one queue and many servers. In this
model we can distinguish following events:
request arrival to queue, begin of service and end
of service and two state variables: number of
elements in queue Q and number of idle servers
S. Module which presents mentioned above
model is shown in the picture Pic.8.

Pic. 8. Module LEGOS of Multi-Server Queue [7]

Our aim is building queuing model which uses
both Arrival Process model and Multi-Server
Queue model. In order to accomplish this, we
need a mechanism by which events occurring
in one object trigger events in another object,
without breaking the encapsulation. This is
accomplished using the listener pattern. The
loosely-coupled nature of the listener
connection is an important distinguishing
feature of the LEGOS framework. In the
queuing model, the listener connection means
that each occurrence of the Arrive event in the
Arrival Process LEGOS stimulates the
occurrence of the Arrive event in the Multi-
Server Queue (Pic.9).

Pic. 9. Queuing Model [7]

4. SimKit library

SimKit library is LEGOS implementation.
Using SimKit we can create independent
components and combine them in more
complicated models. So, it is well suited to
model Java EE application which is itself, set
of collaborating components.

One of the advantages of SimKit is
separation of code which is responsible for
modelling of system’s actions from code used
to collecting statistics during an experiment.
The same design pattern was used here –
Listener. During experiment, classes
responsible for statistics collection are
listening changes of state of model classes.
This is simple and flexible solution because
connection between classes can be configured
in code without need of changing those classes.

T. GÓRSKI, Simulation efficiency analysis method of Java EE application

 24

5. Java EE application model

Model assumptions

In the model of Java EE application have been
made following assumptions:
 Types of requests are distinguished by path

of service realization. Type of request is
marked as ki, where:
 .

 For each type of request was set distribution
time between two consecutive requests of
this type. This distribution for type of request
ki is denoted as gi, where:
 .

 Each path of service realization starts from
servlet and ends on JSP page.

 A certain amount of memory is required to
realize each request. This amount depends on
type of request. For each of type request
amount of memory is specified by
distribution. Distribution of memory amount
for type request ki is denoted by mi, where:
 .

 Request transmission time from client to
server and response transition time from
server to client were omitted.

 Communication with database is realized by
entity Enterprise Java Beans (EJB). Service
time of component entity EJB encompasses
service time of database.

 Lengths of queues in the model are
unlimited.

Model elements

Picture Pic.10 presents example of Java EE
application model.

Pic. 10. Example of model of Java EE application

Presented model is queue model. In the model we
can distinguish following types of elements:

 Requests generator,
 Dispatcher,
 Servlet,
 JSP (Java Server Pages) page,
 Entity Enterprise Java Bean,
 Stateless Session Enterprise Java Bean.

In the following part of the paper models of
types of elements were presented: Requests
generator, Pool and Servlet. Furthermore, path
types of request realization were also
described.

Requests generator

Request generator generates requests of
specified type.
Parameters:
 i – type of requests, which are generated

by this generator,
 gi – distribution function of time between

two consecutive requests of type i,
 mi – distribution function of memory

required to service request of type i.

State variable: LW – number of generated
requests,
Events:
 Run – event required by methodology

Event Graph which adds to event list first
event of type Arrive for generator gi,

 Arrive – event of request generation which
increases number of generated requests
and new request is created – r,

 Arrive(k) – request generation event with
parameter k – object of request. This event
is required to connect Generator with
Dispatcher.

Picture Pic.11 presents state graph for requests
generator in Event Graph methodology.

Pic. 11. Graph for requests generator

Pool

Elements types like Servlet, JSP page, entity
EJB and session EJB use Pool. In case of
servlets and JSP pages this is pool of threads.
But for entity EJBs and session EJBs this is

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 2 21-29 (2008)

 25

pool of objects. Way of pool functioning is the
same for all element types. Number of elements
in pool np is limited by minimal number of
elements in pool nmin and maximal number of
elements in pool nmax, nmin np nmax. After
starting an application, number of elements in
pool is equal to minimal number of elements in
pool, np = nmin. In case when this number is not
enough to realize requests arriving to pool then
new elements are added to the pool. By nc was
denoted number of created elements in specified
time. For pool, condition np + nc nmax should be
true. If for certain element in pool there is no
request to realize by specified time – timeout –
this element is deleted. By nd was denoted
number of excessive elements which are waiting
for deletion and condition 0 nd np - nmin
should be true. By nf was denoted number of free
elements in pool, nd nf.
In time of request arrival to pool there can be one
of the following situations:
 In pool there is idle element, nf > 0 and is get

to request realization.
 In pool there is no idle element, nf = 0 and np

+ nc < nmax. Request is added at the end of
pool’s queue. Pool manager creates new
element which will get first request waiting
in queue.

 In pool there is no idle element, nf = 0 and np
+ nc = nmax. Request is added at the end of
pool’s queue.

After request realization in pool there can occur
one of the following situations:
 In queue is at least one request which waits

for realization – released element gets first
request from queue.

 In queue there is not any request which waits
for realization and np = nmin – released
element becomes idle element.

 In queue there is not any request which waits
for realization and np > nmin – released
element becomes idle element.

We can show pool’s parameters:
 nmin – minimal number of elements in pool,
 nmax – maximal number of elements in pool,
 mem – memory required for one element in

pool,
 tt – timeout,
 tc – creation time of element.

Pool’s state variables are as follows:
 np – number of elements in pool,
 nf – number of idle elements in pool,
 nc – number of created elements,
 nd – number of elements which wait for

deletion,

 q – pool’s queue,
 Um – memory required by pool.

Pool’s events are following:
 Run – event which initiate state of pool,
 Arrive(k) – arrival of request k,
 StartService – start of realization of the

first request from pool’s queue
(r = q.getFirst()),

 EndService(k) – end of realization of
request k,

 AddServer – element’s addition to pool,
 RemoveServer – deletion of an excessive

element from pool.

Picture Pic.12 presents state graph for pool in
Event Graph methodology.

Pic. 12. State graph for pool

Servlet

Servlet models way of functioning of servlet’s
threads pool. Servlet realizes requests which
arrive from generator and forwards them to
JSP page. Servlet may realize one or many
types of requests. Set of request types realized
by specified servlet was denoted by Ks
and KK s ! . For each

si Kk " distribution

function of request service time was specified
si and

si Ss " .

Parameters (besides those which possess pool):
 Cm – memory required by servlet’s code,
 Ks – set of request types realized by

servlet,
 Ss – set of distribution functions of request

service time for each request type realized
by servlet.

Events (besides those which possess pool):
 Process(k) – end of request’s service by

servlet and invoking entity or session EJB,
 EndProcess(k) – end of request’s service

by external to servlet elements,

T. GÓRSKI, Simulation efficiency analysis method of Java EE application

 26

 EndService(k) – sending request to JSP page
and releasing of servlet.

Picture Pic.13 depicts state graph for servlet.

Pic. 13. State graph for servlet

Path types of request service

It was assumed that service of each request starts
from servlet and ends on JSP page. Furthermore,
servlet may invoke entity or session EJB and
forward result of its service to JSP page. Session
EJB may invoke entity EJB. JSP pages and entity
EJBs have not possibility to invoke other
components.
In the model following path types of request
service were identified:
 Request service by servlet > JSP,
 Request service by servlet > session EJB >

servlet > JSP,
 Request service by servlet > entity EJB >

servlet > JSP,
 Request service by servlet > session EJB >

entity EJB > session EJB > servlet > JSP.

For each of paths queue model and Event Graph
diagram were created. In the following part of the
paper path type of request service with session
EJB was presented.
In that case path of service consists of three
elements: servlet, session EJB and JSP page. This
path is realized in consecutive steps:
 Step 1 – request arrival to servlet

(asynchronously),
 Step 2 – invoking session EJB

(synchronously),
 Step 3 – request is forwarded to JSP page

(asynchronously),
 Step 4 – response is sent to client

(asynchronously).
Picture Pic.14 presents path type of request
service with session EJB.

Pic. 14. Path type of request service with session
EJB

Example of Java EE application model

Example of Java EE application model serves
four types of requests, K = {k1, k2, k3, k4}. In
the model there are four generators: G1, G2,
G3, G4, respectively for request types: k1, k2,
k3, k4. Moreover, there are three elements of
type servlet (Servlet1, Servlet2 and Servlet3),
three elements of type JSP page (JSP1, JSP2,
JSP3) and one element of type stateless session
EJB (sessionEJB1) and entity EJB
(entityEJB1). Queuing model of this
application was presented in picture Pic.15.

Pic. 15. Queuing model of example application

Path types of request service specify types of
elements used to request realization. For
example, if two types of requests A and B have
the same path type – path type with session
EJB – then A type requests are realized by
Servlet1, sessionEJB1, JSP1 and B type
requests are realized by Servlet2, sessionEJB2
and JSP2. So this is important to specify
concrete model elements for paths.

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 2 21-29 (2008)

 27

6. Library of Java EE application

model elements

This library was based on SimKit library. Basic
SimKit library was extended by classes which
implements Java EE application model elements
and classes used to collecting statistics. Class
diagram which presents classes of Java EE
application model was depicted in picture Pic.16.

Pic. 16. Class diagram of Java EE application model

This library was created due to have set of

components to configure different models of Java
EE applications. Elements of types Servlet, JSP,
entity EJB and session stateless EJB are pools so
behaviour connected with pool was placed in
class Pool. Furthermore, servlet and session
stateless EJB have ability to invoke other
components’ operations, so code responsible for
such actions was placed in class ExtendedPool.
Code, common for all bridges, was placed in
class Bridge. Namesof descendant classes of
class Bridge determine way of event conversion,
e.g. BridgeEndServiceArrive class converts event
EndService to Arrive.

Classes which are used to statistics
collection were presented in picture Pic.17.
Those classes modify behaviour of standard
SimKit classes.

Pic. 17. Class diagram with statistics classes

7. Design of simulation application

Simulation application implements model of
Java EE application presented in picture
Pic.10. This application uses elements of
extended SimKit library. Simulation
application allows input of model and
experiment parameters, experiment execution
and visualisation of its results. For each of four
types of requests are collected statistics of
response time and throughput. For whole
application memory utilization is also
collected. Application assures separation of
code responsible for user interface from code
responsible for application logic. Code
responsible for simulation was placed in two
classes: ApplicationModel and Experiment
(Pic.18).

Pic. 18. Class diagram of application logic

Class ApplicationModel is responsible for
model creation. Class Experiment realizes
experiment and report generation. Such
organization of code allows on preparation of
one model and conducting many experiments
on the same model. Conversely, we can
prepare one experiment and conduct it for
different models. Way of using classes
ApplicationModel and Experiment was
presented in sequence diagram (Pic.19).

First step is object creation of class
ApplicationModel. Next, all elements of model
are created by using methods:
createGenerator, createServlet, createJSP,
createSessionEJB, createEntityEJB and
createDispatcher. In order to connect all
elements in whole model method
createApplication is invoked. Due to add
monitors to the model, method addMonitors is
invoked. After model creation object of
Experiment class is created. Reference to
object of ApplicationModel is available in

T. GÓRSKI, Simulation efficiency analysis method of Java EE application

 28

object of Experiment class. Invoking
startSimulation method causes conducting of
experiment. After experiment getReport method
is invoked to get experiment’s results.

Pic. 19. Sequence diagram of model and experiment
configuration

8. Simulation experiment

As previously stated, designed application
realizes simulation model of Java EE application
presented in the picture Pic.10. For each of four
types of requests we should determine
distribution time between two consecutive
requests and distribution of memory amount
required to their service. Implemented model
consists of three servlets (Servlet1, Servlet2 and
Servlet3) and three JSP pages (JSP1, JSP2,
JSP3). For each of these elements should be set
maximal and minimal number of threads in pool.
Furthermore, following parameters should be
specified: memory amount for one thread,
thread’s creation time, timeout and memory
amount occupied by servlet’s code. Moreover,
distribution of request type service time should
be specified. For stateless session EJB and entity
EJB should be set maximal and minimal number
of components in pool, memory required by
component, creation time of component and
timeout. In the application you can use tabs to
enter those values.

After completing an experiment, report with
its results is presented on tab „Wyniki” (eng.
Results) (Pic.20).

Pic. 20. Report with experiment results

The application allows determination of
duration time of unstable state of model during
simulation. For example, for mean time request
realization of type 1 this measure is stable for
simulation which lasts minimum 80 units of
time (Pic.21).

Pic. 21. Mean time of type 1 request realization
depending on simulation time

9. Summary

The main result is set of model elements of
Java EE application. LEGOS methodology was
used to describe model of considered
application. Extended library, which allows
configuration of Java EE application, was
designed and developed. In order to present
capabilities of extended library, a simulation
application was designed and developed. It is
worth to emphasize that the library is easy to
extend.

It is planned to add to the library
remaining elements of Java EE application:
stateful session EJB and message-driven EJB.
Furthermore, it is considered to build graphical

0

2

4

6

8

10

12

14

1
0

3
0

5
0

7
0

9
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

Czas trwania symulacji

re

d
n

i
c

z
a

s
 o

b
s
!u

g
i
"#

d
a

n
ia

 t
y

p
u

 1

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 2 21-29 (2008)

 29

application which allows model configuration by
technique drag-and-drop. The following step will
be construction of models which encompass
architectural and design patterns. It will lead to
creation of method and tool which will allow
estimating efficiency (performance) of Java EE
systems at the stage of their design.

10. References

[1] Noel J.: The Evolving Definition of an

Application, www.softwaremag.com,
[2] Servlet and JSP Development with IBM

Rational Software Developer, IBM WF311,
2006,

[3] Freeman E., Sierra K., Bates B.: Head First

Design Patterns. Edycja polska, Helion,
Warszawa, 2005,

[4] Jain R.: The Art of Computer Systems

Performance Analysis: Techniques for

Experimental Design, Measurement,

Simulation, and Modeling, Wiley-
Interscience, New York, NY, April 1991,

[5] Buss A.: Basic Event Graph Modeling,
Operations Research Department, Naval
Postgraduate School, Simulation News
Europe, Monterey, USA, 2001,

[6] Buss A.: Discrete Event Programming with

SimKit, Operations Research Department,
Naval Postgraduate School, Simulation
News Europe, Monterey, USA, 2001,

[7] Buss A., Sanchez P.: Building Complex

Models with LEGOS, Proceedings of the
2002 Winter Simulation Conference, San
Diego, California, USA, 2002,

[8] Górski T.: Symulacyjna metoda badania

wp ywu niejednorodno!ci obci"#enia

i decentralizacji rozpraszania zada$ na

efektywno!% funkcjonowania rozproszonych
sieci komputerowych, Wojskowa Akademia
Techniczna, Warszawa, 2000,

[9] Eeles P., Houston K., Kozaczynski W.:
Building J2EE applications with the
Rational Unified Process, Addison-Wesley,
2003,

[10] Alur D., Crupi J., Malks D.: Core J2EE.

Wzorce projektowe. Wydanie drugie, Helion,
2004.

