PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Hypercomplex Analytic Signals and Fourier Transforms in Cayley-Dickson Algebras

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the definitions of the new hypercomplex Fourier transform and the new hypercomplex analytic signal are recalled. They have been derived basing on Cayley-Dickson algebra multiplication rules. Two other definitions of multidimensional Fourier transforms are presented, i.e., the classical one and the Clifford FT. The relation between them for 3-D real signals is derived. The differences between three complex/hypercomplex FTs are shown regarding the even-odd spectrum components in the 3-D case and norms/pseudonorms of 3-D analytic signals.
Twórcy
autor
  • Institute of Radioelectronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, K.Snopek@ire.pw.edu.pl
Bibliografia
  • 1. S. J. Sangwine: Fourier transforms of colour images using quaternion or hypercomplex numbers, Electron. Lett., vol. 32, no. 21, pp. 1979-1980, Oct. 1996
  • 2. T. Bülow: Hypercomplex spectral signal representation for the processing and analysis of images. In: Bericht Nr. 99-3, Institut f ur Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel, Aug. 1999.
  • 3. T. A. Ell, S. J. Sangwine: Hypercomplex Fourier Transforms of Color Images, IEEE Trans. Image Processing, vol. 16, no. l, pp. 22-35, January 2007
  • 4. D. S. Alexiadis, G. D. Sergiadis: Estimation of Motions in Color Image Sequences Using Hypercomplex Fourier Transforms, IEEE Trans. Image Processing, vol. 18, no. 1, pp. 168-187, January 2009
  • 5. W. R. Hamilton: On quaternions, Proc. Royal Irish Academy, vol. 3, pp. 1-16, 1847
  • 6. W. K. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc., pp. 381-396, 1873
  • 7. S. L. Hahn: Hilbert Transforms in Signal Processing, Artech House Inc., 1996
  • 8. T. Bülow, G. Sommer: The Hypercomplex Signal - A Novel Extension of the Analytic Signal to the Multidimensional Case, IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2844-2852, Nov. 2001
  • 9. K. M. Snopek: New n-dimensional Hypercomplex Fourier Transform Inspired by The Cayley-Dickson Algebra Multiplication Rules, IEEE Signal Proc. Lett, (submitted)
  • 10. J. H. Conway, R. K. Guy: Cayley Numbers. In: The Book of Numbers, New York, Springer-Verlag, pp. 234-235, 1996. Available: http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/papers.html
  • 11. J. Conway, D. Smith: On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry, A. K. Peters Ltd., 2003
  • 12. J. C. Baez: The octonions, Bull. Amer. Math. Soc., vol. 39, no. 2, pp. 145-205, 2001. Available: http://math.ucr.edu/home/baez/octonions
  • 13. K. Imaeda, M. Imaeda: Sedenions: algebra and analysis, Applied Mathematics and Computation, vol. 115, pp. 77-88, 2000
  • 14. G. Sommer (ed.): Geometric Computing with Clifford Algebras, Springer-Verlag, 2001
  • 15. S-C. Pei, J-J. Ding: Quaternions and biquaternions for symmetric Markov-chain system analysis, pp. 1337-1341, Proc. EUSIPCO 2007
  • 16. T. Bülow, M. Felsberg, G. Sommer: Non-Commutative Hypercomplex Fourier Transforms of Multidimensional Signals. In: Geometric Computing with Clifford Algebra, G. Sommer, ed., Berlin: Springer-Verlag, 2001
  • 17. T. A. Ell: Hypercomplex Spectral Transforms, Ph.D. dissertation, Univ. Minnesota, Minneapolis, 1992
  • 18. S. L. Hahn, K. M. Snopek: Comparison of Properties of Analytic, Quaternionic and Monogenic 2-D Signals, WSEAS Transactions on Computers, Issue 3, vol. 3, pp. 602-611, July 2004
  • 19. J. Ebling, G. Scheuermann: Clifford Fourier Transform on Vector Fields, IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 4, pp. 469-479, July/August 2005
  • 20. S. L. Hahn: The N-dimensional complex delta distribution, IEEE Trans. Signal Processing, vol. 44, no. 7, pp. 1833-1837, July 1996
  • 21. S. L. Hahn: Complex Signals with Single-orthant Spectra as Boundary Distributions of Multidimensional Analytic Functions, Bull. Polish Academy of Sciences, Technical Sciences, vol. 51, no. 2, pp. 155-161, 2003
  • 22. A. Mertins: Signal Analysis, John Wiley & Sons Ltd, 1999
  • 23. N. Bourbaki: Topological vector spaces, Springer-Verlag, 1987
  • 24. W. Rudin: Functional analysis, McGraw-Hill, 1979
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0041-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.