PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equations for the Response Probability Density of Dynamic Systems under Multi-Component Non-Poisson Impulse Process Excitations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The excitation considered in the present paper consists of n statistically independent random trains of impulses, each of whom is driven by a non-Poisson, renewal process with inter-arrival times being the sum of two independent negative-exponential distributed random variables with parameters vv, Vs, µs (S = 1, 2, ..., n). Each of the original impulse processes is recast into a Poisson driven impulse process with the aid of an auxiliary, purely jump stochastic variable. Each auxiliary variable is governed by the stochastic differential equation driven by two independent Poisson processes, with parameters Vs, µs, thus it is tantamount to two Markov states. The Markov chain for the whole problem is constructed by considering the coincidences of the states of the individual jump processes. The necessary so-called jump probability intensity functions are determined for all state variables and all possible jumps. The equations governing the joint probability density-distribution function of the response and of the Markov states of the auxiliary variables are derived from the general integro-differential forward Chapman-Kolmogorov equation. The resulting equations form a set of integro-partial differential equations.
Rocznik
Strony
24--36
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
Bibliografia
  • Gardiner, C. W., 1985, Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer-Verlag.
  • Iwankiewicz, R., 2003, Dynamic systems under random impulses driven by a generalized Erlang renewal process, Proc. of 10th IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, 25-27 March 2002, Kansai University, Osaka, Japan (Eds. H. Furuta, M. Dogaki and M. Sakano), Balkema, 103-110.
  • Iwankiewicz, R., 2005a, Equation for probability density of the response of a dynamic system to Erlang renewal random impulse processes, Proc. of 12th IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, Aalborg, Denmark (Eds. J.D. Sorensen and D.M. Frangopol), 107-113.
  • Iwankiewicz, R., 2005b, Equations for probability density of the response of a dynamic system to a non-Poisson jump process and non-Poisson random impulses, Proc. of ICOSSAR '05, Rome, Italy (Eds. G. Augusti, G.I. Schuëller, M. Ciampoli, Millpress, CD ROM, 1889-1893.
  • Iwankiewicz, R., 2008, Equations for probability density of response of dynamic systems to a class of non-Poisson random impulse process excitations, Probabilistic Engineering Mechanics, 23, No 2-3, 198-207.
  • Iwankiewicz, R., Nielsen, S. R. K., 1999, Advanced methods in stochastic dynamics of nonlinear systems, Vibration Theory, 4, Aalborg University Press, Denmark, 1395-8232.
  • Merton, R. C., 1976, Option pricing when underlying stock returns are discontinuous, J. Financial Economics, 3, 125-144.
  • Renger, A., 1979, Equation for probability density of vibratory systems subjected to continuous and discrete stochastic excitation, Zeitschrift fur Angewandte Mathematik und Mechanik, 59, 1-13.
  • Snyder, D. L., 1975, Random point processes, John Wiley, New York.
  • Tellier, M., Iwankiewicz, R., 2005, Response of linear dynamic systems to non-Erlang renewal impulses: stochastic equations approach, Probabilistic Engineering Mechanics, 20, No 4, 281-295.
  • Tylikowski, A.,1982, Vibration of a harmonic oscillator due to a sequence of random collisions, Proc. of the Inst. of Machine Design Foundation, No 13, Warsaw University of Technology (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0040-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.