PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral element modelling of the thermally induced vibration of an axially moving plate

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To develop a spectral element model for accurate prediction of the dynamic characteristics of an axially moving thin uniform plate subjected to sudden thermal loadings on its surfaces. Design/methodology/approach: First, we have derived the governing equations of motion by using the Hamilton's principle. Secondly, we have used the wave solutions, which satisfy the governing equations of motion in the frequency domain, as the frequency-dependent shape functions to formulate the spectral element matrix by using the variational approach. Thirdly, the extremely high accuracy of the spectral element model has been evaluated by comparing the dynamic responses obtained by the spectral element analysis with the results obtained by using the conventional finite element analysis. Findings: It has been numerically shown that the present spectral element model provides very accurate dynamic responses of an axially moving uniform plate by treating the whole plate as a single finite element, regardless of its length. Practical implications: Numerical investigations have shown that the thermally induced vibration characteristics of an axially moving plate depends on the duration and frequency characteristics of externally applied thermal loadings as well as its moving speed. Originality/value: The paper is the first to develop the spectral element model for the axially moving plates subjected to thermal loadings. The present spectral element model can be applied to the galvanized steel strip passing through a hot zinc tank, for instance.
Rocznik
Strony
65--72
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
autor
  • Department of Mechanical Engineering, Inha University, Incheon 402-751, South Korea, ulee@inha.ac.kr
Bibliografia
  • [1] B. A. Boley, Thermally induced vibrations of beams, Journal of Aeronautical Science 23 (1956) 179-181.
  • [2] K. Chandrashekhara, R. Tenneti, Non-linear static and dynamic analysis of heated laminated plates: a finite element approach, Composite Science and Technology 51 (1994) 85-94.
  • [3] W. Grzesik, M. Bartoszuk, P. Nieslony, Finite element modeling of temperature in the cutting zone in turning processes with differently coated tools, Journal of Materials Processing Technology 164-165 (2005) 1204-1211.
  • [4] G. D. Manolis, D. E. Beskos, Thermally induced vibrations of beam structures, Computer Methods in Applied Mechanics and Engineering 21 (1980) 337-355.
  • [5] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulation of magnesium alloy sheet at elevated tempera- tures, Journal of Materials Processing Technology 146 (2004) 52-60.
  • [6] H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures, Journal of Materials Processing Technology 164-165 (2005) 1258-1262.
  • [7] W. J. Xu, J. C. Fang, X. Y. Wang, T. Wang, F. Liu, Z.Y. Zhao, A numerical simulation of temperature filed in plasma -arc forming of sheet metal, Journal of Materials Processing Technology 164-165 (2005) 1644-1649.
  • [8] Y. Y. Yu, Thermally induced vibration and flutter of a flexible beam, Journal of Spacecraft and Rockets 6 (1969) 902-910.
  • [9] U. Lee, Thermal and electromagnetic damping analysis, Journal of American Institute of Aeronautics and Astronautics 23 (1985) 1784-1787.
  • [10] V. K. Kinra, K. B. Milligan, A second-law analysis of thermoelastic damping, Journal of Applied Mechanics 61 (1994) 71-76.
  • [11] T. R. Tauchert, Thermally induced flexure, buckling, and vibration of plates, Applied Mechanics Review 44 (1991) 347-360.
  • [12] E. A. Thornton, Thermal structures: four decades of progress, Journal of Aircraft 29 (1992) 485-498.
  • [13] H. Load, Y. Shulman, A generalized dynamical theory of thermoelasticty, Journal of the Mechanics and Physics of Solids 15 (1967) 299-309.
  • [14] J. Kidawa-Kukla, Vibration of a beam induced by harmonic motion of a heat source, Journal of Sound and Vibration 205 (1997) 213-222.
  • [15] J. N. Sharma, Three-dimensional vibration analysis of a homogeneous transversely isotropic thermoelastic cylindri-cal panel, Journal of the Acoustical Society of America 110 (2001) 254-259.
  • [16] N. Mukherjee, P. K. Sinha, Thermal shocks in composite plates: a coupled thermoelastic finite element analysis, Composite Structures 34 (1996) 1-12.
  • [17] N. S. Al-Hunti, Dynamic behavior of a laminated beam under the effect if a moving heat source, Journal of Composite Materials 38 (2004) 2143-2160.
  • [18] Bar, O. Bar, Types of mid-frequency vibrations appearing during the rolling mill operation, Journal of Materials Processing Technology 162-163 (2005) 461-464.
  • [19] J. Niziol, A. Swiatoniowski, Numerical analysis of the vertical vibration of rolling mills and their negative effect on the sheet quality, Journal of Material Processing Technology 162-163 (2005) 546-550.
  • [20] U. Lee, K. Kwon, Thermally induced vibration of an axially-traveling strip: spectral element analysis, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 261-264.
  • [21] U. Lee, Spectral element method in structural dynamics, Inha University Press, Incheon, Korea, 2004.
  • [22] D. E. Newland, Random Vibrations, Spectral and wavelet analysis, Third Edition, Longman, New York, 1993.
  • [23] R. D. Blevins, Formulas for natural frequency and mode shape, Van Nostrand Reinhold, New York, 1979
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0040-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.