PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the distribution of numbers n satisfying the congruence 2 n-k ≡ 1 (mod n) for k =2 and k=4

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we address an old problem concerning the existence of infinitely many solutions n of the congruence 2 n-k ≡ 1 (mod n) for an arbitrary positive integer k. The existence of infinitely many solutions of that congruence follows from more general but not constructive theorems, which do not give an answer about the number of solutions below a given limit x. It is well known that if k = 1, then our congruence hold for every prime number n > 2 as well as for infinitely many odd composite integers n, called pseudoprimes. If k = 3 then every number n of the form 3p (p an odd prime) is a solution of the congruence 2 n-3 ≡ 1 (mod n). We study the distribution of consecutive solutions of our congruence in the two simplest but resistant cases k = 2 and k = 4.
Twórcy
Bibliografia
  • 1. P. Erdös, R. L. Graham: Old and new problems in Combinatorial Number Theory, Old and new problems and results in combinatorial number theory. Universite de Geneve, L'Enseignement Mathematique, 1980.
  • 2. P. Kiss, Bui Minh Phong: On Problem of A. Rotkiewicz, Math. Comp. 48(1987), pp. 751-755.
  • 3. A. Mąkowski: Generalization of Morrow's D numbers, Simon Stevin, 36(1962), 71.
  • 4. W. L. McDaniel: The generalized pseudoprime congruence a n-k ≡ b n-k (mod n), C.R.H. Math. Rep. Acad. Sci. Canada, Vol. 9(2), 1987, pp. 143-147.
  • 5. W. L. McDaniel: Some pseudoprimes and related numbers having special forms. Math. Comp. 53(1989), pp. 407-408;
  • 6. P. Montgomery: http://www.spacefire.com/numbertheory/2nmodn.htm, at the web side of J. Crump.
  • 7. D. C. Morrow: Some properties of D numbers, Amer. Math. Monthly 58(1951), 324-330.
  • 8. A. Paszkiewicz, A. Rotkiewicz: On pseudoprimes of the form an - a, Proceedings of the Eleventh Conference on Fibonacci Numbers, Braunschweig, 2004 (still being in press).
  • 9. A. Rotkiewicz: Pseudoprime numbers and their generalizations. Student Association of the Faculty of Sciences, University of Novi Sad, Novi Sad 1972, pp.i.+169; M.R. 48#8373.
  • 10. A. Rotkiewicz: On the congruence 2 n-2 ≡ 1 (mod n), Math. Comp. 43(1984), pp. 271-272; MR 85e : 1105.
  • 11. K. Zsigmondy: Zur Theorie der Potenzreste. Monatshefte Math. Phys. 3(1892), pp. 264-284
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0037-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.