PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New material systems for third generation infrared photodetectors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Third-generation infrared (IR) systems are being developed nowadays. In the common understanding, these systems provide enhanced capabilities-like larger numbers of pixels, higher frame rates, and better thermal resolution as well as multicolour functionality and other on-chip functions. In this class of detectors, two main competitors, HgCdTe photodiodes and quantum-well photoconductors, have being developed. Recently, two new material systems have been emerged as the candidates for third generation IR detectors, type II InAs/GaInSb strain layer superlattices (SLSs) and quantum dot IR photodetectors (QDIPs). In the paper, issue associated with the development and exploitation of multispectral photodetectors from these new materials is discussed. Discussions is focused on most recently on-going detector technology efforts in fabrication both photodetectors and focal plane arrays (FPAs). The challenges facing multicolour devices concerning complicated device structures, multilayer material growth, and device fabrication are described.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, rogan@wat.edu.pl
Bibliografia
  • 1. P. Norton, J. Campbell, S. Horn, and D. Reago, “Third-generation infrared imagers”, Proc. SPIE 4130, 226-236 (2000).
  • 2. M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, P. R. Leavitt, S. W. Kennedy, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane applications of QWIP and MCT”, Opto-Electron. Rev. 7, 283-296 (1999).
  • 3. M.N. Abedin, T.F. Refaat, I.. Bhat, Y. Xiao, S. Bandara, and S.D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing”, Proc. SPIE 5543, 239-247 (2004).
  • 4. P. McCarley, “Recent developments in biologically inspired seeker technology”, Proc. SPIE 4288, 1-12 (2001).
  • 5. J.T. Caulfield, “Next generation IR focal plane arrays and applications”, Proc. 32nd Applied Imagery Pattern Recognition Workshop, IEEE 2003.
  • 6. R.A. Smith, F.E. Jones and R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.
  • 7. P.W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
  • 8. E.S. Barr, “Historical survey of the early development of the infrared spectral region”, Amer. J. Phys. 28, 42-54 (1960).
  • 9. T.W. Case, “Notes on the change of resistance of certain substrates in light”, Phys. Rev. 9, 305-310 (1917).
  • 10. R.J. Cushman, “Film-type infrared photoconductors”, Proc. IRE 47, 1471-1475 (1959).
  • 11. http://coolcosmos.ipac.caltech.edu/cosmic_classroom/timeline/timeline_onepage.html
  • 12. A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, Amsterdam, 2000.
  • 13. R. Thorn, “High density infrared detector arrays”, U.S. Patent No. 4,039,833 (1977).
  • 14. I. M. Baker and R. A. Ballingall, “Photovoltaic CdHgTe-silicon hybrid focal planes”, Proc. SPIE 510, 121-129 (1984).
  • 15. P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320-348, Marcel Dekker Inc., New York, 2003.
  • 16. A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays”, Laser Focus World, 81-84, February 2006.
  • 17. A.W. Hoffman, P.L. Love, and J.P. Rosbeck, “Mega-pixel detector arrays: Visible to 28 um”, Proc. SPIE 5167, 194-203 (2004).
  • 18. D. Reago, S. Horn, J. Campbell, and R. Vollmerhausen, “Third generation imaging sensor system concepts”, Proc. SPIE, 3701, 108-117 (1999).
  • 19. S. Horn, P. Norton, T. Cincotta, A. Stolz, D. Benson, P. Perconti, and J. Campbell, “Challenges for third-generation cooled imagers”, Proc. SPIE 5074, 44-51 (2003).
  • 20. A. Rogalski and P. Martyniuk, “InAs/GaInSb superlattices as a promising material system for third generation infrared detectors”, Infrared Phys. Technol. 48, 39-52 (2006).
  • 21. A. Rogalski, “Competitive technologies of third generation infrared photon detectors”, Opto-Electron. Rev. 14, 87-101 (2006).
  • 22. P.R. Norton, “Third-generation sensors for night vision”, Opto-Electron. Rev. 14, 283-296 (2006).
  • 23. L.J. Kozlowski and W.F. Kosonocky, “Infrared detector arrays”, in Handbook of Optics, Chap. 23, edited by M. Bass, E.W. Van Stryland, D.R. Williams, and W.L. Wolfe, McGraw-Hill, Inc. New York (1995).
  • 24. H. Schneider, P. Koidl, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, and G. Weimann, “Ten years of QWIP development at Fraunhofer”, Infrared Phys. Technol. 42, 283-289 (2001).
  • 25. A. Rogalski, “HgCdTe infrared detector material: History, status, and outlook”, Rep. Prog. Phys. 68, 2267-2336 (2005).
  • 26. P.D. Dreiske, “Development of two-color focal-palne arrays based on HDVIP”, Proc. SPIE 5783, 325-330 (2005).
  • 27. D.F. King, W.A. Radford, E.A. Patten, R.W. Graham, T.F. McEwan, J.G. Vodicka, R.F. Bornfreund, P.M. Goetz, G.M. Venzor, and S.M. Johnson, “3rd-Generation 1280720 FPA development status at Raytheon Vision Systems”, Proc. SPIE 6206, 62060W (2006).
  • 28. G. Destefanis, P. Ballet, J. Baylet, P. Castelein, O. Gravrand, J. Rothman, F. Rothan, G. Perrais, J.P. Chamonal, A. Million, P. Tribolet, B. Terrier, E. Sanson, P. Costa, and L. Vial, “Bi-color and dual-band HgCdTe infrared focal plane arrays at DEFIR”, Proc. SPIE 6206, 62060R (2006).
  • 29. N.T. Gordon, P. Abbott, J. Giess, A. Graham, J.E. Hails, D.J. Hall, L. Hipwood, C.L. Lones, C.D. Maxeh, and J. Price, “Design and assessment of metal-organic vapour phase epitaxy-grown dual wavelength infrared detectors”, J. Electron. Mater. 36, 931-936 (2007).
  • 30. G. Destefanis, J. Baylet, P. Ballet, P. Castelein, F. Rothan, O. Gravrand, J. Rothman, J.P. Chamonal, and Million, “Status of HgCdTe bicolor and dual-band infrared focal plane arrays at LETI”, J. Electron. Mater. 36, 1031-1044 (2007).
  • 31. S.D. Gunapala and S.V. Bandara, “GaAs/AlGaAs based quantum well infrared photodetector focal plane arrays”, in Handbook of Infrared Detection Technologies, edited by M. Henini and M. Razeghi, pp. 83-119, Elsevier, Oxford, 2002.
  • 32. G. Sarusi, “QWIP or other alternatives for third generation infrared systems”, Infrared Phys. Technol. 44, 439-444 (2003).
  • 33. A. Rogalski, “Quantum well photoconductors in infrared detectors technology”, J. Appl. Phys. 93, 4355-4391 (2003).
  • 34. A. Manissadjian, D. Gohier, E. Costard, and A. Nedelcu, “Single color and dual band QWIP production results”, Proc. SPIE 6206, 62060E (2006).
  • 35. M. Münzberg, R. Breiter, W. Cabanski, H. Lutz, J. Wendler, J. Ziegler, R. Rehm, and M. Walther, “Multi spectral IR detection modules and applications”, Proc. SPIE 6206, 620627 (2006).
  • 36. S.D. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, C.J. Hill, S.B. Rafol, D. Salazar, J. Woollaway, P.D. LeVan, and M.Z. Tidrow, “Towards dualband megapixel QWIP focal plane arrays”, Infrared Phys. Technol. 50, 217-226 (2007).
  • 37. A. Nedelcu, E. Costard, P. Bois, and X. Marcadet, “Research topics at Tales Research and Technology: Small pixels and third generation applications”, Infrared Phys. Technol. 50, 227-233 (2007).
  • 38. A. Rogalski, “Third generation photon detectors”, Opt. Eng. 42, 3498-3516 (2003).
  • 39. E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, and J.R. Meyer, “Dual band LWIR/VLWIR type-II superlattice photodiodes”, Proc. SPIE 5783, 112-122 (2005).
  • 40. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, and W. Cabanski, “InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging”, Opto-Electron. Rev. 14, 283-296 (2006).
  • 41. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, J. Ziegler, W. Cabanski, and R. Breiter, “2nd and 3rd generation thermal imagers based on type-II superlattice photodiodes”, Proc. SPIE 6294, 629404 (2006).
  • 42. S.M. Kim and J.S. Harris, “Multicolor InGaAs quantum-dot infrared photodetectors”, IEEE Photon. Technol. Lett. 16, 2538-2540 (2004).
  • 43. S. Chakrabarti, X.H. Su, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a multicolour InGaAs-GaAs quantum-dot infrared photodetector”, IEEE Photon. Technol. Lett. 17, 178-180 (2005).
  • 44. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett. 86, 193501 (2005).
  • 45. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Two-color focal plane arrays based on self assembled quantum dots in a well heterostructure”, Phys. Stat. Sol.(c) 3, 439-443 (2006).
  • 46. E. Varley, M. Lenz, S.J. Lee, J.S. Brown, D.A. Ramirez, A. Stintz, and S. Krishna, “Single bump, two-color quantum dot camera”, Appl. Phys. Lett. 91, 081120 (2007).
  • 47. S. Krishna, S.D. Gunapala, S.V. Bandara, C. Hill, and D.Z. Ting, “Quantum dot based infrared focal plane arrays”, Proc. IEEE 95, 1838-1852 (2007).
  • 48. L. Bürkle and F. Fuchs, “InAs/(GaIn)Sb superlattices: a promising material system for infrared detection”, in Handbook of Infrared Detection and Technologies, pp. 159-189, edited by M. Henini and M. Razeghi, Elsevier, Oxford, 2002.
  • 49. G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gon, and M. Razeghi, “Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection”, Proc. SPIE 4999, 457-466 (2003).
  • 50. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors”, J. Appl. Phys. 62, 2545-2548 (1987).
  • 51. C. Mailhiot and D.L. Smith, “Long-wavelength infrared detectors based on strained InAs-GaInSb type-II superlattices”, J. Vac. Sci. Technol. A7, 445-449 (1989).
  • 52. J.P. Omaggio, J.R. Meyer, R.J. Wagner, C.A. Hoffman, M.J. Yang, D.H. Chow, and R.H. Miles, “Determination of band gap and effective masses in InAs/Ga1-xInxSb superlattices”, Appl. Phys. Lett. 61, 207-209 (1992).
  • 53. C.A. Hoffman, J.R. Meyer, E.R. Youngdale, F.J. Bartoli, R.H. Miles, and L.R. Ram-Mohan, “Electron transport in InAs/Ga1-xInxSb superlattices”, Solid State Electron. 37, 1203-1206 (1994).
  • 54. C.H. Grein, P.M. Young, and H. Ehrenreich, “Minority carrier lifetimes in ideal InGaSb/InAs superlattice”, Appl. Phys. Lett. 61, 2905-2907 (1992).
  • 55. C.H. Grein, P.M. Young, M.E. Flatté, and H. Ehrenreich, “Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes”, J. Appl. Phys. 78, 7143-7152 (1995).
  • 56. E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, and D.H. Chow, “Auger lifetime enhancement in InAs–Ga1–xInxSb superlattices”, Appl. Phys. Lett. 64, 3160-3162 (1994).
  • 57. O.K. Yang, C. Pfahler, J. Schmitz, W. Pletschen, and F. Fuchs, “Trap centers and minority carrier lifetimes in InAs/GaInSb superlattice long wavelength photodetectors,“ Proc. SPIE 4999, 448-456 (2003).
  • 58. J.L. Johnson, “The InAs/GaInSb strained layer superlattice as an infrared detector material: An Overview”, Proc. SPIE 3948, 118-132 (2000).
  • 59. G.J. Brown, “Type-II InAs/GaInSb superlattices for infrared detection: an overview”, Proc. SPIE 5783, 65-77 (2005).
  • 60. M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan, “High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays”, Proc. SPIE 5783, 86-97 (2005).
  • 61. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, W. Cabanski, and J. Ziegler, “InAs/(GaIn)Sb short-period superlattices for focal plane arrays”, Proc. SPIE 5783, 123-130 (2005).
  • 62. P.-Y. Delaunay, A. Hood, B.-M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure”, Appl. Phys. Lett. 91, 091112 (2007).
  • 63. A. Hood, P.-Y. Delaunay, D. Hoffman, B.-M. Nguyen, Y. Wei, M. Razeghi, and V. Nathan, “Near bulk-limited RoA of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation”, Appl. Phys. Lett. 90, 233513 (2007).
  • 64. J. Bajaj, G. Sullivan, D. Lee, E. Aifer, and M. Razeghi, “Comparison of type-II superlattice and HgCdTe infrared detector technologies”, Proc. SPIE 6542, 65420B (2007).
  • 65. E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, C.L. Canedy, and E.M. Jackson, “W-Structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency”, Appl. Phys.Lett. 89, 053510 (2006).
  • 66. B.-M. Nguyen, D. Hoffman, P-Y. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier”, Appl. Phys. Lett. 91, 163511 (2007).
  • 67. C.L. Canedy, H. Aifer, I. Vurgaftman, J.G. Tischler, J.R. Meyer, J.H. Warner, and E.M. Jackson, “Antimonide type-II W photodiodes with long-wave infrared RoA comparable to HgCdTe”, J. Electron. Mater. 36, 852-856 (2007).
  • 68. B.-M. Nguyen, D. Hoffman, Y. Wei, P.-Y. Delaunay, A. Hood, and M. Razeghi, “Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 um”, Appl. Phys. Lett. 90, 231108 (2007).
  • 69. C.H. Grein, H. Cruz, M.E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors”, Appl. Phys. Lett. 65, 2530-2532 (1994).
  • 70. A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi, “Capacitance-voltage investigation of high-purity InAs/GaSb superlattice photodiodes”, Appl. Phys. Lett. 88, 052112 (2006).
  • 71. W. Cabanski, K. Eberhardt, W. Rode, J. Wendler, J. Ziegler, J. Fleißner, F. Fuchs, R. Rehm, J. Schmitz, H. Schneider, and M. Walther, “3rd gen focal plane array IR detection modules and applications”, Proc. SPIE 5406, 184-192 (2005).
  • 72. P.-Y. Delaunay, B.M. Nguyen, D. Hoffman, and M. Razeghi, “High-performance focal plane array based on InAs-GaSb superlattices with a 10-um cutoff wavelength”, IEEE J. Quant. Electron. 44, 462-467 (2008).
  • 73. Y. Arakawa and H. Sakaki, “Multidimensional quantum-well laser and temperature dependence of its threshold current”, Appl. Phys. Lett. 40, 939-941 (1982).
  • 74. D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, and P.M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surface”, Appl. Phys. Lett. 63, 3203-3205 (1993).
  • 75. I.N. Stranski and L. Krastanow, “Zur theorie der orientierten ausscheidung von lonenkristallen aufeinander”, Sitzungsberichte d. Akad. d. Wissenschaften in Wein. Abt. IIb, Vol. 146, 797-810 (1937).
  • 76. Ch. Sikorski and U. Merkt, “Spectroscopy of electronic states in InSb quantum dots”, Phys. Rev. Lett. 62, 2164-2167 (1989).
  • 77. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, “Nonlocal dynamic response and level crossings in quantum-dot structures”, Phys. Rev. Lett. 64, 788-791 (1990).
  • 78. J. Phillips, K. Kamath, and Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum wells”, Appl. Phys. Lett. 72, 2020-2021 (1998).
  • 79. P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices”, Proc. IEEE 95, 1723-1740 (2007).
  • 80. J.C. Campbell and A. Madhukar, “Quantum-dot infrared photodetectors”, Proc. IEEE 95, 1815-1827 (2007).
  • 81. P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots”, C.R. Physique 4, 1133-1154 (2003).
  • 82. S.Y. Wang, S.D. Lin, W. Wu, and C.P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer”, Appl. Phys. Lett. 78, 1023-1025 (2001).
  • 83. V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer”, J. Appl. Phys. 89, 5117-5124 (2001).
  • 84. S.W. Lee, K. Hirakawa, and Y. Shimada, “Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures”, Appl. Phys. Lett. 75, 1428-1430 (1999).
  • 85. P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices”, Proc. IEEE 95, 1723-1740 (2007).
  • 86. J.C. Campbell and A. Madhukar, “Quantum-dot infrared photodetectors”, Proc. IEEE 95, 1815-1827 (2007).
  • 87. S. Krishna, “Quantum dots-in-a-well infrared photodetectors”, J. Phys. D: Appl. Phys. 38, 2142-2150 (2005).
  • 88. S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, B. Rafol, E.R. Blazejewski, J.M. Mumolo, S.A. Keo, S. Krishna, Y.-C. Chang, and C.A. Shott, “640 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photoconductor (QDIP) imaging focal plane array”, IEEE J. Quantum Electron. 43, 230-237 (2007).
  • 89. M.A. Kinch, “Fundamental physics of infrared detector materials”, J. Electron. Mater. 29, 809-817 (2000).
  • 90. J. Phillips, “Evaluation of the fundamental properties of quantum dor infrared detectors”, J. Appl. Phys. 91, 4590-4594 (2002).
  • 91. H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photoconductors grown on InP substrate operating at room temperature”, Appl. Phys. Lett. 90, 131112 (2007).
  • 92. I. Vurgaftman, Y. Lam, and J. Singh, “Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers”, Phys. Rev. B50, 14309-14326 (1994).
  • 93. E. Towe and D. Pan, “Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors”, IEEE J. Selected Topics in Quantum Electronics 6, 408-421 (2000).
  • 94. J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. 84, 2166-2168 (2004).
  • 95. J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar, and M. Razeghi, “High-detectivity quantum-dot infrared photodetectors grown by metalorganic chemical-vapor deposition”, Appl. Phys. Lett. 88, 121102 (2006).
  • 96. E.-T. Kim, A. Madhukar, Z. Ye, and J.C. Campbell, “High detectivity InAs quantum dot infrared photodetectors”, Appl. Phys. Lett. 84, 3277-3279 (2004).
  • 97. R.S. Attaluri, S. Annamalai, K.T. Posani, A. Stintz, and S. Krishna, “Influence of Si doping on the performance of quantum dots-in-well photodetectors”, J. Vac. Sci. Technol. B24, 1553-1555 (2006).
  • 98. S. Chakrabarti, A.D. Stiff-Roberts, X.H. Su, P. Bhttacharya, G. Ariyawansa, and A.G.U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors”, J. Phys. D: Appl. Phys. 38, 2135-2141 (2005).
  • 99. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Two-color focal plane arrays based on self assembled quantum dots in a well heterostructure”, Phys. Stat. Sol. (c) 3, 439-443 (2006).
  • 100. X. Lu, J. Vaillancourt, and M.J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector”, Appl. Phys. Lett. 91, 051115 (2007).
  • 101. J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.
  • 102. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Phys. Technol. 46, 115-131 (2004).
  • 103. J. Piotrowski and A. Piotrowski, “Uncooled infrared photodetectors in Poland”, Opto-Electron. Rev. 14, 37-45 (2006).
  • 104. X.H. Su, S. Chakrabarti, P. Bhattacharya, A. Ariyawansa, and A.G.U. Perera, “A resonant tunneling quantum-dot infrared photodetector”, IEEE J. Quant. Electron. 41, 974-979 (2005).
  • 105. A.G.U. Perera, G. Ariyawansa, V.M. Apalkov, S.G. Matsik, X.H. Su, S. Chakrabarti, and P. Bhattacharya, “Wavelength and polarization selective multi-band tunneling quantum dot detectors”, Opto-Electron. Rev. 15, 223-228 (2007).
  • 106. J.L. Vampola, “Readout electronic for infrared sensors”, in The Infrared and Electro-Optical Systems Handbook, Vol. 3, pp. 285-342, edited by W.D. Rogatto, SPIE Optical Engineering Press, Bellingham (1993).
  • 107. J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T. O’Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow, “Demonstration of a 256 256 middle-wavelength infrared focal plane array based on GaAs/InGaP quantum dot infrared photodetectors”, Appl. Phys. Lett. 84, 2232-2234 (2004).
  • 108. S.-F. Tang, C.-D. Chiang, P.-K. Weng, Y.-T. Gau, J.-J. Luo, S.-T. Yang, C.-C. Shih, A.-Y. Lin, and S.-C. Lee, “High-temperature operation normal incident 256x256 InAs-GaAs quantum-dot infrared photodetector focal plane array”, IEEE Photon. Technol. Lett. 18, 986-988 (2006).
  • 109. H. Halpert and B.I. Musicant, “N-color (Hg,Cd)Te photodetectors”, Appl. Optics 11, 2157-2161 (1972).
  • 110. InSb/HgCdTe two-color detector, http://www.irassociates.com/insbhgcdte.htm
  • 111. J.C. Campbell, A.G. Dentai, T.P. Lee, and C.A. Burrus, “Improved two-wavelength demultiplexing InGaAsP photodetector”, IEEE J. Quantum Electron. QE-16, 601 (1980).
  • 112. E.R. Blazejewski, J.M. Arias, G.M. Williams, W. McLevige, M. Zandian, and J. Pasko, “Bias-switchable dual-band HgCdTe infrared photodetector.” J. Vac. Sci. Technol. B10), 1626 (1992).
  • 113. J.A. Wilson, E.A. Patten, G.R. Chapman, K. Kosai, B. Baumgratz, P. Goetz, S. Tighe, R. Risser, R. Herald, W.A. Radford, T. Tung, and W.A. Terre, “Integrated two-color detection for advanced FPA applications”, Proc. SPIE 2274, 117-125 (1994).
  • 114. R.D. Rajavel, D.M. Jamba, J.E. Jensen, O.K. Wu, J.A. Wilson, J.L. Johnson, E.A. Patten, K. Kasai, P.M. Goetz and S.M. Johnson, “Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors”, J. Electron. Mater. 27, 747-751 (1998).
  • 115. W.A. Radford, E.A. Patten, D.F. King, G.K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E.P. Smith, R. Graham, S.M. Johnson, J. Roth, B. Nosho, and J. Jensen, “Third generation FPA development status at Raytheon Vision Systems”, Proc. SPIE 5783, 331-339 (2005).
  • 116. E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, “HgCdTe focal plane arrays for dual-color midand long-wavelength infrared detection”, J. Electron. Mater. 33, 509-516 (2004).
  • 117. E.P.G. Smith, E.A. Patten, P.M. Goetz, G.M. Venzor, J.A. Roth, B.Z. Nosho, J.D. Benson, A.J. Stoltz, J.B. Varesi, J.E. Jensen, S.M. Johnson, and W.A. Radford, “Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors”, J. Electron. Mater. 35, 1145-1152 (2006).
  • 118. M. B. Reine, A. Hairston, P. O'Dette, S. P. Tobin, F. T. J. Smith, B. L. Musicant, P. Mitra, F. C. Case, “Simultaneous MW/LW dual-band MOCVD HgCdTe 6464 FPAs”, Proc. SPIE 3379, 200-212 (1998).
  • 119. J.P. Zanatta, P. Ferret, R. Loyer, G. Petroz, S. Cremer, J.P. Chamonal, P. Bouchut, A. Million, and G. Destefanis, “Single and two colour infrared focal plane arrays made by MBE in HgCdTe”, Proc. SPIE 4130, 441-451 (2000).
  • 120. P. Tribolet. M. Vuillermet, and G. Destefanis, “The third generation cooled IR detector approach in France”, Proc. SPIE 5964 49-60 (2005).
  • 121. J.P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal. A. Million, G. Destefanis, S. Mibord, E. Brochier, and P. Costa, “Molecular beam epitaxy of HgCdTe on Ge for third-generation infrared detectors”, J. Electron. Mater. 35, 1231-1236 (2006).
  • 122. J. Giess, M.A. Glover, N.T. Gordon, A. Graham, M.K. Haigh, J.E. Hails, D.J. Hall, and D.J. Lees, “Dial-wavelength infrared focal plane arrays using MCY grown by MOVPE on silicon substrates”, Proc. SPIE 5783, 316-324 (2005).
  • 123. C.L. Jones, L.G. Hipwood, J. Price, C.J. Shaw, P. Abbott, C.D. Maxey, H.W. Lau, R.A. Catchpole, M. Ordish, P. Knowles, and N.T. Gordon, “Multi-colour IRFPAs made from HgCdTe grown by MOVPE”, Proc. SPIE 6542, 654210 (2007).
  • 124. M. A. Kinch, “HDVIP ™ FPA technology at DRS”, Proc. SPIE 4369, 566-578 (2001).
  • 125. F. Aqariden, P.D. Dreiske, M.A. Kinch, P.K. Liao, T. Murphy, H.F. Schaake, T.A. Shafer, H.D. Shih, and T.H. Teherant, “Development of molecular beam epitaxy grown Hg1–xCdxTe for high-density vertically-integrated photodiode-based focal plane arrays”, J. Electron. Mater. 36, 900-904 (2007).
  • 126. W.E. Tennant, M. Thomas, L.J. Kozlowski, W.V. McLevige, D.D. Edwall, M. Zandian, K. Spariosu, G. Hildebrandt, V. Gil, P. Ely, M. Muzilla, A. Stoltz, and J.H. Dinan, “A novel simultaneous unipolar multispectral integrated technology approach for HgCdTe IR detectors and focal plane arrays”, J. Electron. Mater. 30, 590–594 (2001).
  • 127. L.A. Almeida, M. Thomas, W. Larsen, K. Spariosu, D.D. Edwall, J.D. Benson, W. Mason, A.J. Stoltz, and J.H. Dinan, “Development and fabrication of two-color mid- and short-wavelength infrared simultaneous unipolar multispectral integrated technology focal-plane arrays”, J. Electron. Mater. 30, 669-676 (2002).
  • 128. M. Münzberg, R. Breiter, W. Cabanski, K. Hofmann, H. Lutz, J. Wendler, J. Ziegler, P. Rehm, and M. Walther, “Dual color IR detection modules, trends and applications”, Proc. SPIE 6542, 654207 (2007).
  • 129. X. Lu, J. Vaillancourt, and M. Meisner, “A voltage-tunable multiband quantum dor infrared focal plane array with high photoconductivity”, Proc. SPIE 6542, 65420Q (2007).
  • 130. U. Sakoglu, J.S. Tyo, M.M. Hayat, S. Raghavan, and S. Krishna, “Spectrally adaptive infrared photodetectors with bias-tunable quantum dots”, J. Opt. Soc. Amer. B. 21, 7-17 (2004).
  • 131. A.G.U. Perera, “Quantum structures for multiband photon detection”, Opto-Electron. Rev. 14, 99-108 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.