PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrugated SNOM probe with enhanced energy throughput

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.
Twórcy
autor
Bibliografia
  • 1. E.H. Synge, “A suggested method for extending the microscopic resolution into the ultramicroscopic region”, Philos. Mag. 6, 356-362 (1928).
  • 2. D.W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution l/20”, Appl. Phys. Lett. 44, 651-653 (1984).
  • 3. E. Betzig, P.L. Finn, and J.S. Weiner, “Combined shear force and near-field scanning optical microscopy”, Appl. Phys. Lett. 60, 2484-2486 (1992).
  • 4. M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998.
  • 5. J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409-426 (2007).
  • 6. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007.
  • 7. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094-4196 (1994).
  • 8. K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233-241 (2006).
  • 9. A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679-3683 (2003).
  • 10. L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27-35 (2004).
  • 11. J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40-44 (2007).
  • 12. T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756-1758 (1997).
  • 13. S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45-48 (1998).
  • 14. T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090-2092 (1998).
  • 15. P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981-986 (2002).
  • 16. S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32-37 (2006).
  • 17. W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High--resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811-1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811
  • 18. E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005).
  • 19. K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832-846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2- 832
  • 20. T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920-10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920
  • 21. A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176-181 (2004).
  • 22. T.J. Antosiewicz and T. Szoplik, “Description of near- and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845-7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845
  • 23. C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001).
  • 24. P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370-4379 (1972).
  • 25. W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818-4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818
  • 26. S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
  • 27. A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.