PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Signal processing system in cavity enhanced spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a signal processing system used for nitrogen dioxide detection employing cavity enhanced absorption spectroscopy. In this system, the absorbing gas concentration is determined by the measurement of a decay time of a light pulse trapped in a cavity. The setup includes a resonance optical cavity, which was equipped with spherical and high reflectance mirrors, the pulsed diode laser (414 nm) and electronic signal processing system. In order to ensure registration of low-level signals and accurate decay time measurements, special preamplifier and digital signal processing circuit were developed. Theoretical analyses of main parameters of optical cavity and signal processing system were presented and especially signal-to-noise ratio was taken into consideration. Furthermore, investigation of S/N signal processing system and influence of preamplifier feedback resistance on the useful signal distortion were described. The aim of the experiment was to study potential application of cavity enhanced absorption spectroscopy for construction of fully optoelectronic NO₂ sensor which could replace, e.g., commonly used chemical detectors. Thanks to the developed signal processing system, detection limit of NO₂ sensor reaches the value of 0.2 ppb (absorption coefficient equivalent = 2.8 x 10 ⁻⁹ cm⁻¹ ).
Twórcy
autor
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, jwojtas@wat.edu.pl
Bibliografia
  • 1. J.M. Herbelin and J.A. McKay, “Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method”, Appl. Optics 20, 3341-3344 (1981).
  • 2. A. O'Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544-554 (1988).
  • 3. J. Wojtas, A. Czyżewski, T. Stacewicz, Z. Bielecki, and J. Mikołajczyk, “Cavity enhanced spectroscopy for NO2 detection”, Proc. SPIE 5954, 174-178 (2005).
  • 4. V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691-698 (2003).
  • 5. J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with cavity enhanced spectroscopy”, Opt. Appl. 36, 461-467 (2006).
  • 6. K.W. Busch and M.A. Busch, Cavty-Ringdown Spectroscopy, ACS Symposium series, American Chemical Society, Washington DC, 1999.
  • 7. Z. Bielecki, “Maximisation of signal-to-noise ratio in infrared receivers”, Opto-Electron. Rev. 10, 209-216 (2006).
  • 8. Z. Bielecki, “Readout electronics for optical detectors”, Opto-Electron. Rev. 12, 129-137 (2004).
  • 9. A. Rogalski and Z. Bielecki, “Detection of optical radiation” in Handbook of optoelectronics, Vol. 1, pp. 73-117, edited by J.P. Dakin and R.W.G. Brown, Taylor&Francis, USA, 2006.
  • 10. S.O. Flyckt and C. Marmonier, Photomultiplier Tubes, Principles, and Applications, Photonics, Brive, 2002.
  • 11. A.G. Wright, “Why photomultipliers need amplifiers?”, Electron Tubes Ltd, Technical reprint R/P093, http://www.electrontubes.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.