PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Near infrared spectroscopy to study the brain: an overview

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper gives an overview of principles, technologies, and applications using near infrared spectrometry and imaging (NIRS and NIRI) to study brain function. The physical background is reviewed and technologies and their properties are discussed. Advantages and limitations of NIRI are described. The basic functional signals obtained by NIRI, the neuronal and the hemodynamic signal are described and in particular publications about the former are reviewed. Applications in adults and neonates are reviewed, too.
Twórcy
autor
autor
autor
autor
autor
autor
  • Clinic of Neonatology, University Hospital Zurich, Frauenklinikstr. 10, 8091 Zurich, Switzerland, martin.wolf@usz.ch
Bibliografia
  • 1. S.R. Arridge, M. Cope, and D.T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis”, Phys. Med. Biol. 37, 1531-1560 (1992).
  • 2. M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties”, Appl. Optics 28, 2331-2336 (1989).
  • 3. D.A. Boas, M.A. O'Leary, B. Chance, and A.G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytical solution and applications”, Proc. Natl. Acad. Sci. USA 91, 4887-4891 (1994).
  • 4. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation”, Biochim. Biophys. Acta 933, 184-192 (1988).
  • 5. S. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D.T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy”, Proc. SPIE 2389, 486-495 (1995).
  • 6. P. van der Zee, M. Cope, S.R. Arridge, M. Essenpreis, L.A. Potter, A.D. Edwards, J.S. Wyatt, D.C. McCormick, S.C. Roth, and E.O. Reynolds, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing”, Adv. Exp. Med. Biol. 316, 143-153 (1992).
  • 7. S. Fantini, M.A. Franceschini-Fantini, J.S. Maier, S.A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry”, Opt. Eng. 34, 32-42 (1995).
  • 8. M.A. O'Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography”, Opt. Lett. 20, 426 428 (1995).
  • 9. S. Eda and E. Okada, “Monte Carlo analysis of time-resolved spatial sensitivity profiles in realistic head models”, Proc. SPIE 4250, 383-390 (2001).
  • 10. V. Toronov, A. Webb, J.H. Choi, M. Wolf, A. Michalos, E. Gratton, and D. Hueber, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging”, Med. Phys. 28, 521-527 (2001).
  • 11. J.H. Choi, M. Wolf, V.Y. Toronov, A. Michalos, and E. Gratton, “Spatio-temporal analysis of the cerebral spontaneous oscillation”, Proc. SPIE 5330, 29-37 (2004).
  • 12. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements”, Neuroimage 29, 697-705 (2006).
  • 13. J.C. Hebden, “Advances in optical imaging of the newborn infant brain”, Psychophysiol. 40, 501-510 (2003).
  • 14. J.C. Hebden and T. Austin, “Optical tomography of the neonatal brain”, Eur. Radiol. 17, 2926-2933 (2007).
  • 15. H. Obrig and A. Villringer, “Beyond the visible-imaging the human brain with light”, J. Cereb. Blood. Flow. Metab. 23, 1-18 (2003).
  • 16. J. Steinbrink, A. Villringer, F. Kempf, D. Haux, S. Boden, and H. Obrig, “Illuminating the BOLD signal: combined fMRI-fNIRS studies”, Magn. Reson. Imaging 24, 495-505 (2006).
  • 17. Y. Hoshi, “Functional near-infrared spectroscopy: potential and limitations in neuroimaging studies”, Int. Rev. Neurobiol. 66, 237-266 (2005).
  • 18. Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping”, Psychophysiol. 40, 511-520 (2003).
  • 19. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light”, J. Biomed. Opt. 10, 11008 (2005).
  • 20. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications”, J. Biomed. Opt. 12, 062104 (2007).
  • 21. M.A. Franceschini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution”, Opt. Express 6, 49 (2000).
  • 22. S. Fantini and P. Taroni, “Optical Mammography”, in Cancer Imaging: Lung and Breast Carcinomas, pp. 449-458, edited by M.A. Hayat, Elsevier, 2007.
  • 23. R.X. Xu and S.P. Povoski, “Diffuse optical imaging and spectroscopy for cancer”, Expert Rev. Med. Devic. 4, 83-95 (2007).
  • 24. D.R. Leff, O.J. Warren, L.C. Enfield, A. Gibson, T. Athanasiou, D.K. Patten, J. Hebden, G.Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review”, Breast Cancer Res. Tr. 108, 9-22 (2007).
  • 25. D.A. Benaron, D.C. Ho, S. Spilman, J.P. Van Houten, and D.K. Stevenson, “Tomographic time-of-flight optical imaging device”, Adv. Exp. Med. Biol. 361, 207-214 (1994).
  • 26. T. Austin, “Optical imaging of the neonatal brain”, Arch. Dis. Child.-Fetal 92, F238-41 (2007).
  • 27. D. Haensse, P. Szabo, D. Brown, J.C. Fauchere, P. Niederer, H.U. Bucher, and M. Wolf, “New multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates”, Opt. Express 13, 4525-4538 (2005).
  • 28. L.B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission”, Physiol. Rev. 53, 373-418 (1973).
  • 29. D.W. Hochman, “Intrinsic optical changes in neuronal tissue. Basic mechanisms”, Neurosurg. Clin. N. Am. 8, 393-412 (1997).
  • 30. I. Tasaki, “Rapid structural changes in nerve fibers and cells associated with their excitation processes”, Jpn. J. Physiol. 49, 125-138 (1999).
  • 31. J.J. Sable, D.M. Rector, and G. Gratton, “Optical neurophysiology based on animal models”, IEEE Eng. Med. Biol. 26, 17-24 (2007).
  • 32. R.A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G.E. Blonder, R.E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering”, Proc. Natl. Acad. Sci. USA 88, 9382-9386 (1991).
  • 33. B.M. Salzberg, A.L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis”, J. Gen. Physiol. 86, 395-411 (1985).
  • 34. A. Grinvald, E. Lieke, R.D. Frostig, C.D. Gilbert, and T.N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals”, Nature 324, 361-364 (1986).
  • 35. D.M. Rector, G.R. Poe, M.P. Kristensen, and R.M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation”, J. Neurophysiol. 78, 1707-1713 (1997).
  • 36. D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping”, Science 272, 551-554 (1996).
  • 37. D.M. Rector, R.F. Rogers, J.S. Schwaber, R.M. Harper, and J.S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation”, Neuroimage 14, 977-994 (2001).
  • 38. M.C. DeSoto, M. Fabiani, D.C. Geary, and G. Gratton, “When in doubt, do it both ways: brain evidence of the simultaneous activation of conflicting motor responses in a spatial stroop task”, J. Cognitive Neurosci. 13, 523-536 (2001).
  • 39. G. Gratton, P.M. Corballis, E. Cho, M. Fabiani, and D.C. Hood, “Shades of grey matter: noninvasive optical images of human brain responses during visual stimulation”, Psychophysiol. 32, 505-509 (1995).
  • 40. G. Gratton, M. Fabiani, P.M. Corballis, D.C. Hood, M.R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI”, Neuroimage 6, 168-180 (1997).
  • 41. G. Gratton, M. Fabiani, P.M. Corballis, and E. Gratton, “Noninvasive detection of fast signals from the cortex using frequency-domain optical methods”, Ann. NY. Acad. Sci. 820, 286-298 (1997).
  • 42. G. Gatton, M. Fabiani, and P.M. Corballis, “Can we measure correlates of neuronal activity with non-invasive optical methods?”, Adv. Exp. Med. Biol. 413, 53-62 (1997).
  • 43. G. Gratton, A. Sarno, E. Maclin, P.M. Corballis, and M. Fabiani, “Toward noninvasive 3-D imaging of the time course of cortical activity: investigation of the depth of the event-related optical signal”, Neuroimage 11, 491-504 (2000).
  • 44. G. Gratton and M. Fabiani, “The event-related optical signal: a new tool for studying brain function”, Int. J. Psychophysiol. 42, 109-121 (2001).
  • 45. G. Gratton and M. Fabiani, “Shedding light on brain function: the event-related optical signal”, Trends. Cogn. Sci. 5, 357-363 (2001).
  • 46. G. Gratton and M. Fabiani, “The event-related optical signal (EROS) in visual cortex: replicability, consistency, localization, and resolution”, Psychophysiol. 40, 561-571 (2003).
  • 47. K.A. Low, E. Leaver, A.F. Kramer, M. Fabiani, and G. Gratton, “Fast optical imaging of frontal cortex during active and passive oddball tasks”, Psychophysiol. 43, 127-136 (2006).
  • 48. G. Gratton, C.R. Brumback, B.A. Gordon, M.A. Pearson, K.A. Low, and M. Fabiani, “Effects of measurement method, wavelength, and source-detector distance on the fast optical signal”, Neuroimage 32, 1576-1590 (2006).
  • 49. E.L. Maclin, K.A. Low, J.J. Sable, M. Fabiani, and G. Gratton, “The event-related optical signal to electrical stimulation of the median nerve”, Neuroimage 21, 1798-1804 (2004).
  • 50. E.L. Maclin, K.A. Low, M. Fabiani, and G. Gratton, “Improving the signal-to-noise ratio of event-related optical signals”, IEEE Eng. Med. Biol. Mag. 26, 47-51 (2007).
  • 51. T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Naatanen, “Scalp-recorded optical signals make sound processing in the auditory cortex visible?”, Neuroimage 10, 620-624 (1999).
  • 52. F. Syre, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, “Are VEP correlated fast optical signals detectable in the human adult by non-invasive nearinfrared spectroscopy (NIRS)?”, Adv. Exp. Med. Biol. 530, 421-431 (2003).
  • 53. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head”, Neurosci. Lett. 291, 105-108 (2000).
  • 54. J. Steinbrink, F.C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal-robust or elusive when non-invasively measured in the human adult?”, Neuroimage 26, 996-1008 (2005).
  • 55. M. Wolf, U. Wolf, J.H. Choi, R. Gupta, L.P. Safonova, L.A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex”, Neuroimage 17, 1868-1875 (2002).
  • 56. M. Wolf, U. Wolf, J.H. Choi, V. Toronov, L.A. Paunescu, A. Michalos, and E. Gratton, “Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry”, Psychophysiol. 40, 521-528 (2003).
  • 57. G. Morren, U. Wolf, P. Lemmerling, M. Wolf, J.H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis”, Med. Biol. Eng. Comput. 42, 92-99 (2004).
  • 58. M.A. Franceschini and D.A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging”, Neuroimage 21, 372-386 (2004).
  • 59. A.V. Medvedev, S. Borisov, J. Kainerstorfer, R. Guyonneau, M. Riesenhuber, and J. VanMeter, “Event related fast optical signal in an object deteaction taks: A NIRS/EEG comparison study”, 13 th Annual Meeting of the Organization for Human Brain Mapping 32M, Chicago, 2007.
  • 60. C.Y. Tse, C.L. Lee, J. Sullivan, S.M. Garnsey, G.S. Dell, M. Fabiani, and G. Gratton, “Imaging cortical dynamics of language processing with the event-related optical signal”, Proc. Natl. Acad. Sci. USA 104, 17157-17162 (2007).
  • 61. J.K. Thompson, M.R. Peterson, and R.D. Freeman, “Single-neuron activity and tissue oxygenation in the cerebral cortex”, Science 299, 1070-1072 (2003).
  • 62. M.M. Plichta, M.J. Herrmann, C.G. Baehne, A.C. Ehlis, M.M. Richter, P. Pauli, and A.J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?”, Neuroimage 31, 116-124 (2006).
  • 63. T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M.A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men”, Neurosci. Res. 57, 504-512 (2007).
  • 64. B.W. Zeff, B.R. White, H. Dehghani, B.L. Schlaggar, and J.P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography”, Proc. Natl. Acad. Sci. USA 104, 12169-12174 (2007).
  • 65. D.A. Boas, A.M. Dale, and M.A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy”, Neuroimage 23, Suppl. 1, S275-S2788 (2004).
  • 66. J.H. Meek, C.E. Elwell, M.J. Khan, J. Romaya, J.S. Wyatt, D.T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy”, Proc. Biol. Sci. 261, 351-356 (1995).
  • 67. Y. Hoshi, S. Kohri, Y. Matsumoto, K. Cho, T. Matsuda, S. Okajima, and S. Fujimoto, “Hemodynamic responses to photic stimulation in neonates”, Pediatr. Neurol. 23, 323-327 (2000).
  • 68. T. Karen, G. Morren, D. Haensse, A.S. Bauschatz, H.U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy”, Hum. Brain Mapp. 29, 453-460 (2008).
  • 69. S. Chen, K. Sakatani, W. Lichty, P. Ning, S. Zhao, and H. Zuo, “Auditory-evoked cerebral oxygenation changes in hypoxic-ischemic encephalopathy of newborn infants monitored by near infrared spectroscopy”, Early Hum. Dev. 67, 113-121 (2002).
  • 70. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y.P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy”, Early Hum. Dev. 55, 229-236 (1999).
  • 71. P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates”, Pediatr. Res. 49, 213-219 (2001).
  • 72. K. Kotilahti, I. Nissil, R. Makela, T. Noponen, L. Lipiainen, N. Gavrielides, T. Kajava, M. Huotilainen, V. Fellman, P. Merilainen, and T. Katila, “Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices”, Proc. SPIE 5693, 388-395 (2005).
  • 73. Y. Saito, T. Kondo, S. Aoyama, R. Fukumoto, N. Konishi, K. Nakamura, M. Kobayashi, and T. Toshima, “The function of the frontal lobe in neonates for response to a prosodic voice”, Early Hum. Dev. 83, 225-230 (2007).
  • 74. M. Bartocci, J. Winberg, C. Ruggiero, L.L. Bergqvist, G. Serra, and H. Lagercrantz, “Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study”, Pediatr. Res. 48, 18-23 (2000).
  • 75. M. Bartocci, J. Winberg, G. Papendieck, T. Mustica, G. Serra, and H. Lagercrantz, “Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy”, Pediatr. Res. 50, 324-330 (2001).
  • 76. M. Bartocci, L.L. Bergqvist, H. Lagercrantz, and K.J. Anand, “Pain activates cortical areas in the preterm newborn brain”, Pain 122, 109-117 (2006).
  • 77. H.U. Bucher, T. Moser, K. von Siebenthal, M. Keel, M. Wolf, and G. Duc, “Sucrose reduces pain reaction to heel lancing in preterm infants: a placebo-controlled, randomized and masked study”, Pediatr. Res. 38, 332-335 (1995).
  • 78. R. Slater, S. Boyd, J. Meek, and M. Fitzgerald, “Cortical pain responses in the infant brain”, Pain 123, 332-334 (2006).
  • 79. J.H. Meek, M. Firbank, C.E. Elwell, J. Atkinson, O. Braddick, and J.S. Wyatt, “Regional hemodynamic responses to visual stimulation in awake infants”, Pediatr. Res. 43, 840-843 (1998).
  • 80. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography”, Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003).
  • 81. S.R. Hintz, D.A. Benaron, A.M. Siegel, A. Zourabian, D.K. Stevenson, and D.A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation”, J. Perinat. Med. 29, 335-343 (2001).
  • 82. M. Pena, A. Maki, D. Kovacic, G. Dehaene-Lambertz, H. Koizumi, F. Bouquet, and J. Mehler, “Sounds and silence: an optical topography study of language recognition at birth”, Proc. Natl. Acad. Sci. USA 100, 11702-11705 (2003).
  • 83. K. Isobe, T. Kusaka, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, and S. Onishi, “Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement”, Neurosci. Lett. 299, 221-224 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.