PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Theoretical analysis of crosstalk between oxygenated and deoxygenated haemoglobin in focal brain-activation measurements by near-infrared topography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crosstalk between concentration changes in oxygenated haemoglobin and deoxygenated haemoglobin calculated by the modified Lambert-Beer law in near-infrared topography is theoretically investigated. The changes in intensity detected with probe pairs on the scalp caused by the concentration change in either oxygenated or deoxygenated haemoglobin induced by the focal brain activation is predicted by Monte Carlo simulation. The topographic images of the changes in oxygenated and deoxygenated haemoglobin are obtained from the changes in the intensity of light at two wavelengths detected by probe pairs to evaluate the crosstalk. The crosstalk slightly depends on the positional relationship between the probe arrangement and the focal brain activation and is minimised when the focal brain activation is located below a measurement point that is the midpoint between a probe pair. The 690-/830-nm wavelength pair is practically effective for reducing the crosstalk, especially the crosstalk from oxygenated haemoglobin to deoxygenated haemoglobin, in the NIR topography.
Twórcy
autor
autor
autor
autor
  • Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Bibliografia
  • 1. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography”, Med. Phys. 22, 1997-2005 (1995).
  • 2. D.A. Boas, T. Gaudette, G. Strangman, X. Cheng, J.J.A. Marota, and J.B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal change in cerebral hemodynamics”, Neuroimage 13, 76-90 (2001).
  • 3. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamasita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications”, Appl. Opt. 42, 3054-3062 (2003).
  • 4. K. Uludag, M. Kohl, J. Steinbrink, H. Obring, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations”, J. Biomed. Opt. 7, 51-59 (2002).
  • 5. G. Strangman, M.A. Franceschini, and D.A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters”, Neuroimage 18, 865-879 (2003).
  • 6. N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxyhemoglobin”, J. Biomed. Opt. 10, 011015-1-8 (2005).
  • 7. C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique”, Phys. Med. Biol. 43, 2465-2478 (1998).
  • 8. M. Firbank, M. Hiraoka, M. Essenpreis, and D.T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm”, Phys. Med. Biol. 38, 503-510 (1993).
  • 9. P. van der Zee, M. Essenpreis, and D.T. Delpy, “Optical properties of brain tissue”, Proc. SPIE 1888, 454-465 (1993).
  • 10. E. Okada and D.T. Delpy, “Near-infrared light propagation in an adult head model. I. Modelling of low-level scattering in the cerebrospinal fluid layer”, Appl. Opt. 42, 2906-2914 (2003).
  • 11. L. Wang, S.L. Jacques, and L. Zheng, “MCML-Monte Carlo modelling of light transport in multi-layered tissues”, Comput. Meth. Prog. Bio. 47, 131-146 (1995).
  • 12. D.A. Boas, J.P. Culver, J.J. Stott, and A.K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head”, Opt. Express 10, 159-170 (2002).
  • 13. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models”, Appl. Opt. 42, 2881-2887 (2003).
  • 14. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of time of flight photons”, Appl. Opt. 43, 3037-3047 (2004).
  • 15. F.F.M. de Mul, W. Steenbergen, and J. Greve, “Doppler Monte Carlo simulation of light scattering in tissue to support laser-Doppler perfusion measurements”, Technol. Health Care 7, 171-183 (1999).
  • 16. Y. Watanabe and E. Okada, “Influence of perfusion depth on laser Doppler flow measurements with large sourcedetector spacing”, Appl. Opt. 42, 3198-3204 (2003).
  • 17. R. Graaff, M.H. Koelink, F.F.M. de Mul, W.G. Zijlstra, A.C.M. Dassel, and J.G. Aarnoudse, “Condensed Monte Carlo simulation for the description of light transport”, Appl. Opt. 32, 426-434 (1993).
  • 18. N.S. Żołek, A. Liebert, and R. Maniewski, “Optimization of the Monte Carlo code for modelling of photon migration in tissue”, Comput. Meth. Prog. Bio. 84, 50-57 (2006).
  • 19. B.C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue”, Med. Phys. 10, 824-830 (1983).
  • 20. P. van der Zee and D.T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique”, Adv. Exp. Med. Biol. 251, 179-191 (1987).
  • 21. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S.R. Arridge, P. van der Zee, and D.T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy”, Phys. Med. Biol. 38, 1859-1876 (1993).
  • 22. E. Okada and D.T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal”, Appl. Opt. 42, 2915-2922 (2003).
  • 23. H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation”, J. Biomed. Opt. 10, 044001/1-10 (2005).
  • 24. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non- invasively, with light”, Opt. Express 2, 411-423 (1998).
  • 25. I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study”, Neuroimage 14, 1186-1192 (2001).
  • 26. H. Wabnitz, M. Moeller, A. Walter, R. Macdonald, R. Erdmann, O. Raitza, M. Kacprzak, A. Liebert, C. Drenckhahn, J.P. Dreier, S. Koch, and J. Steinbrink, “Depthselective analysis of responses to functional stimulation recorded with a time-domain NIR brain imager”, in Biomedical Optics Topical Meeting, ME34, Optical Society of America, Washington, DC, Fort Lauderdale, Florida, (2006).
  • 27. J. Selb, D.K. Joseph and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008/1-13 (2006).
  • 28. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019/1-14 (2007).
  • 29. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system”, Rev. Sci. Instrum. 70, 3595-3602 (1999).
  • 30. R.M. Danen, Y. Wang, X.D. Li, W.S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light”, Photochem. Photobiol. 67, 33-40 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.