PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light polarization fingerprints on nonlinear dynamics of vertical-cavity surface-emitting lasers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we summarize the recent results on nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) which are bearing the fingerprints of the particular polarization properties of VCSELs. Due to the surface emission and cylindrical symmetry, VCSELs lack strong polarization anisotropy and may undergo polarization switching and polarization mode-hopping. This provides new specificities to the rich nonlinear dynamics induced in VCSELs by an external perturbation. We unveil both experimentally and theoretically these new specificities for the case of optical feedback, optical injection, and unidirectional synchronization between VCSELs.
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1. Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics, Vol. 6, p. 133, edited by H. Li and K. Iga, Springer-Verlang, Berlin, 2002.
  • 2. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behaviour of vertical-cavity surfaceemitting lasers: experiments, models and applications”, American Inst. of Physiscs Proc. 560, 403-417 (2000).
  • 3. C. Chang-Hasnain, J. Harbison, G. Hasnain, A. Von Lehmen, L. Florez, and N. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers”, IEEE J. Quantum Elect. 27, 1402-1409 (1991).
  • 4. K. Choquette, D. Richie, and R. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization”, Appl. Phys. Lett. 64, 2062-2064 (1994).
  • 5. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing”, IEEE Photonic. Techn. L. 10, 6-9 (1998).
  • 6. M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers”, Phys. Rev. A68, 033822/1-033822/11 (2003).
  • 7. B. Ryvkin, K. Panajotov, A. Georgievski, J. Danckaert, M. Peeters, G. Verschaffelt, H. Thienpont, and I. Veretennicoff, “Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical - cavity surface - emitting lasers”, J. Opt. Soc. Am. B16, 2106-2113 (2000).
  • 8. A. Valle, J. Sarma, and K. Shore, “Spatial hole burning effects on the dynamic of VCSELs”, IEEE J. Quantum Elect. 31, 1423-1431 (1995).
  • 9. K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 77, 1590-1592 (2000).
  • 10. M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers”, Phys. Rev. A52, 1728-1739 (1995).
  • 11. J. Martin-Regalado, M. San Miguel, and N. Abraham, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers”, Opt. Lett. 21, 351-353 (1996).
  • 12. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment”, IEEE J. Quantum Elect. 28, 93-108 (1992).
  • 13. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers”, J. Lightwave Technol. 4, 1655-1661 (1986).
  • 14. Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback”, IEEE Photonic. Techn. L. 3, 597-599 (1991).
  • 15. K. Panajotov, M. Arizaleta, V. Gomez, K. Koltys, A. Tabaka, M. Sciamanna, I. Veretennicoff, and H. Thienpont, “Semiconductor laser for quantum sensing”, Proc. SPIE 5359, 360-375 (2004).
  • 16. P. Besnard, M. Chares, G. Stephan, and F. Robert, “Switching between polarization modes of a vertical-cavity surface-emitting laser by isotropic optical feedback”, J. Opt. Soc. Am. B16, 1059-1063 (1999).
  • 17. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode-hopping in vertical-cavity surface-emitting lasers”, Opt. Lett. 28, 1543-1545 (2003).
  • 18. G. Giacomelli, F. Marin, and I. Rabbiosi, “Stochastic and bona fide resonance: an experimental investigation”, Phys. Rev. Lett. 82, 675-678 (1999).
  • 19. M. Willemsen, M. Khalid, M. Van Exter, and J. Woerdman, “Polarization switching of a vertical-cavity surface-emitting laser as a Kramers hopping problem”, Phys. Rev. Lett. 82, 4815-4818 (1999).
  • 20. B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment”, Phys. Rev. A68, 013813/1-013813/8 (2003).
  • 21. C. Masoller, “Distribution of residence times of time-delayed bistable systems driven by noise”, Phys. Rev. Lett. 90, 020601/1-020601/4 (2003).
  • 22. K. Panajotov, M. Sciamanna, A. Tabaka, P. Megret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, “Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers”, Phys. Rev. A69, 011801(R)/1-011801(R)/1 (2004).
  • 23. R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance”, J. Phys. A14, 453 457 (1981).
  • 24. J. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, “Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance”, Nature 365, 337-340 (1993).
  • 25. B. McNamara, K. Wiesenfeld, and R. Roy, “Observation of stochastic resonance in a ring laser”, Phys. Rev. Lett. 60, 2626-2629 (1988).
  • 26. W. Hohmann, J. Müller, and F. Schneider, “Stochastic resonance in chemistry. 3. The minimal-bromate reaction“, J. Chem. Phys. 100, 5388-5392 (1996).
  • 27. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic resonance”, Rev. Mod. Phys. 70, 223-287 (1998).
  • 28. H. Gang, T. Ditzinger, C. Ning, and H. Haken, “Stochastic resonance without external periodic force”, Phys. Rev. Lett. 71, 807-809 (1993).
  • 29. A. Pikovsky and J. Kurths, “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett. 78, 775-778 (1997).
  • 30. A. Neiman, P. Saparin, and L. Stone, “Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems”, Phys. Rev. E56, 270-273 (1997).
  • 31. S. Fauve and F. Heslot, “Stochastic resonance in a bistable system”, Phys. Lett. 97A, 5-7 (1983).
  • 32. G. Giacomelli, M. Giudici, S. Balle, and J. Tredicce, “Experimental evidence of coherence resonance in an optical system”, Phys. Rev. Lett. 84, 3298-3301 (2000).
  • 33. K. Miyakawa and H. Isikawa, “Experimental observation of coherence resonance in an excitable chemical reaction system”, Phys. Rev. E66, 046204-046207 (2002).
  • 34. B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems”, Phys. Rep. 392, 321-424 (2004).
  • 35. I. Kiss, J. Hudson, G. Santos, and P. Parmananda, “Experiments on coherence resonance: Noisy precursors to Hopf bifurcations”, Phys. Rev. E67, 035201R/1-035201R/4 (2003).
  • 36. O. Ushakov, H. Wünsche, F. Henneberger, I. Khovanov, L. Schimansky-Geier, and M. Zaks, “Coherence resonance near a hopf bifurcation”, Phys. Rev. Lett. 95, 123903/1-123903/4 (2005).
  • 37. B. Lindner and L. Schimansky-Geier, “Coherence and stochastic resonance in a two-state system”, Phys. Rev. E61, 6103-6110 (2000).
  • 38. C. Masoller, “Noise-induced resonance in delayed feedback systems”, Phys. Rev. Lett. 88, 034102/1-034102/4 (2002).
  • 39. C. Palenzuela, R. Toral, C. Mirasso, O. Calvo, and J. Gunton, “Coherence resonance in chaotic systems”, Europhys. Lett. 56, 347-353 (2001).
  • 40. L. Tsimring and A. Pikovsky, “Noise-induced dynamics in bistable systems with delay”, Phys. Rev. Lett. 87, 250602/1-250602/4 (2001).
  • 41. L. Nunney, “The effect of long time delays in predator-prey systems”, Theor. Popul. Biol. 27, 202-221 (1985).
  • 42. M. Mackey, “Commodity fluctuations: price dependent delays and nonlinearities as explanatory factors”, J. Econ. Theory 48, 497-509 (1989).
  • 43. M. Arizaleta, M. Valencia, M. Sciamanna, H. Thienpont, M. Lopez-Amo, and K. Panajotov, “Experimental evidence of coherence resonance in a time-delayed bistable system”, Phys. Rev. Lett. 99, 023903/1-023903/4 (2007).
  • 44. M. A. Arteaga, H. J. Unold, J. M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity, part I: Theoretical analysis”, IEEE J. Quantum. Elect. 42, 89-110 (2006).
  • 45. M. Arteaga, M. López-Amo, H. Thienpont, and K. Panajotov, “Role of external cavity reflectivity for achieving polarization control and stabilization of vertical cavity surface emitting laser”, Appl. Phys. Lett. 90, 031117-031119 (2007).
  • 46. H. Stover and W. Steier, “Locking of laser oscillators by light injection”, Appl. Phys. Lett. 8, 91-93 (1966).
  • 47. K. Kurokawa, “Injection-locking of microwave solid-state oscillation”, Proc. IEEE 61, 1386-1408 (1973).
  • 48. K. Iwashita and K. Nakagawa, “Suppression of mode partition by laser diode light injection”, IEEE J. Quantum Elect. 18, 1669-1674 (1982).
  • 49. R. Lang, “Injection locking properties of a semiconductor laser”, IEEE J. Quantum Elect. 18, 976-983 (1982).
  • 50. S. Piazzolla, P. Spano, and M. Tamburrini, “Small signal analysis of frequency chirping in injection-locked semiconductor lasers”, IEEE J. Quantum Elect. 22, 2219-2223 (1986).
  • 51. T. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers”, IEEE Photonic. Techn. L. 9, 1322-1324 (1997).
  • 52. T. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injectionlocked semiconductor lasers”, IEEE Photonic. Techn. L. 7, 709-711 (1995).
  • 53. J.-M. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking”, IEEE Photonic. Techn. L. 9, 1325-1327 (1997).
  • 54. L. Goldberg, H. Taylor, J. Weller, and D. Scifres, “Injection locking of coupled-stripe diode laser arrays”, Appl. Phys. Lett. 46, 236-238 (1985).
  • 55. E. Lee, H. Pang, J. Park, and H. Lee, “Bistability and chaos in an injection-locked semiconductor laser”, Phys. Rev. A47, 736-739 (1993).
  • 56. J. Sacher, W. Elssaser, and E. Gobel, “Intermittency in the coherence collapse of a semiconductor laser with external feedback”, Phys. Rev. Lett. 63, 2224-2227 (1989).
  • 57. V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection”, IEEE J. Quantum Elect. 30, 1537-1541 (1994).
  • 58. T. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. Alsin, “Period-doubling cascade and chaos in a semiconductor laser with optical injection”, Phys. Rev. A51, 4181-4185 (1995).
  • 59. P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers”, Phys. Rev. Lett. 78, 2353-2356 (1997).
  • 60. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection”, Phys. Rev. Lett. 88, 063901/1-063901/4 (2002).
  • 61. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, ”Excitability in a quantum dot semiconductor laser with optical injection”, Phys. Rev. Lett. 98, 153903/1-153903/4 (2007).
  • 62. Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Ason, and R. Leibenguth, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 63, 2999-3001 (1993).
  • 63. H. Li, T. Lucas, J. McInerney, M. Wright, and R. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection”, IEEE J. Quantum Elect. 32, 227-235 (1996).
  • 64. Y. Hong, P. Spencer, P. Rees, and A. Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers”, IEEE J. Quantum Elect. 38, 274-278 (2002).
  • 65. J. Law, F. Van Tartwijk, and G. Agrawal, “Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers”, Quantum Semic. Opt. 9, 737-747 (1997).
  • 66. S. Bandyopadhyay, Y. Hong, P. Spencer, and A. Shore, “Experimental observation of antiphase polarisation dynamics in VCSELs”, Opt. Commun. 202, 145-154 (2002).
  • 67. Y. Hong, P. Spencer, S. Bandyopadhyay, P. Rees, and A. Shore, “Polarization resolved chaos and instabilities in a VCSEL subject to optical injection”, Opt. Commun. 216, 185-187 (2003).
  • 68. J. Buesa, I. Gatare, K. Panajotov, H., Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers”, IEEE J. Quantum Elect. 42, 198-207 (2006).
  • 69. I. Gatare, M. Sciamanna, J. Buesa, H. Thienpont, and K. Panajotov, “Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection”, Appl. Phys. Lett. 88, 101106-101108 (2006).
  • 70. M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers”, Opt. Lett. 30, 2903-2905 (2005).
  • 71. M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface- emitting lasers”, Phys. Rev. A73, 023811/1-023811/17 (2006).
  • 72. I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection”, Phys. Rev. A75, 023804/1-023804/7 (2007).
  • 73. B. S. Ryvkin, K. Panajotov, E.A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable VCSELs”, J. Appl. Phys. 96, 6002–6007 (2004).
  • 74. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection”, IEEE J. Quantum Elect. 43, 322-333 (2007).
  • 75. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic system”, Phys. Rev. Lett. 64, 821-824 (1990).
  • 76. C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: Application to encoded communications”, IEEE Photonic. Tech. L. 8, 299-301 (1996).
  • 77. R. Ju, P. Spencer, and K. A. Shore, “Polarization-preserved and polarization-rotated synchronization of chaotic vertical-cavity surface-emitting lasers”, IEEE J. Quantum Elect. 41, 1461-1467 (2005).
  • 78. M. S. Torre, C. Masoller, and K. A. Shore, “Synchronization of unidirectionally coupled multi-transverse-mode verticalcavity surface-emitting lasers”, J. Opt. Soc. Am. B21, 1772-1780 (2004).
  • 79. Y. Hong, M. W. Lee, P. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers”, Opt. Lett. 29, 1215-1217 (2004).
  • 80. I. Gatare, M. Sciamanna, A. Locquet, and K. Panajotov, “Influence of polarization mode competition on the synchronization of two unidirectionally coupled vertical-cavity surface-emitting lasers”, Opt. Lett. 32, 1629 (2007).
  • 81. A. Locquet, F. Rogister, M. Sciamanna, P. Mégret, and M. Blondel, “Two types of synchronization in unidirectionally coupled chaotic external-cavity semiconductor lasers”, Phys. Rev. E64, 045203(R)/1-045203(R)/4 (2001).
  • 82. M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers”. Phys. Rev. E75, 056213 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.