Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new model for the image auto-annotation task is presented. The model can be classified as a fast image auto-annotation one. The main idea behind the model is to avoid various problems with feature space clustering. Both the image segmentation and the auto-annotation process do not, use any clustering algorithms. The method presented here simulates continuous feature space analysis with very dense discretization. The paper presents the new approach and discusses the results achieved with it.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
123--140
Opis fizyczny
Bibliogr. 13 poz., il., wykr.
Twórcy
autor
autor
- Institute of Applied Informatics, Wroclaw University of Technology
Bibliografia
- [1] Barnard K., Duygulu P., Forsyth D., de Freitas N.: Object Recognition as Machine Translation - Learning a Lexicon for a Fixed Image Vocabulary, In Proc. of ECCV'2002. http://citeseer.ist.psu.edu/duygulu02object.html
- [2] ECCV 2002 image dataset, http://kobus.ca/research/data/eccv_2002/index.html
- [3] Jeon J., Lavrenko V. and Manmatha R.: Automatic Image Annotation and Retrieval using Cross-Media Relevance Models, In Proceedings of the ACM SIGIR. Conference on Research and Development in Information Retrieval, pp. 119-126, 2003.
- [4] Barnard K., Duygulu P., Forsyth D., de Freitas N., Blei D. M., Jordan M. I.: Matching Words and Pictures, Journal of Machine Learning Research 3, 2003.
- [5] Lavrenko V., Manmatha R., Jeon J.: A Model for Learning the Semantics of Pictures, In Proc. of NIPS'03, 2003. http://ciir.cs.umass.edu/pubfiles/mm-46.pdf
- [6] Monay F., Gatica-Perez D.: On Image Auto-Annotation with Latent Space Models, In Proc. ACM Int. Conf. on Multimedia (ACM MM), Berkeley, November 2003. http://citeseer.ist.psu.edu/context/2411445/660339
- [7] Pan J., Yang H., Faloutsos C, Duygulu P.: GCap: Graph-based Automatic Image Captioning, In Proceedings of the 4th International Workshop on Multimedia Data and Document Engineering (MDDE 04), in conjunction with Computer Vision Pattern Recognition Conference (CVPR 04), 2004. Washington DC, July 2nd 2004. http://www.cs.cmu.edu/ jypan/publicationsl/b2hd-MDDE04GCap.html
- [8] Feng S. L., Manmatha R. and Lavrenko V.: Multiple Bernoulli Relevance Models for Image and Video Annotation, 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (GVPR'04) - Vol. 2, pp. 1002-1009, 2004
- [9] ICPR 2005 image dataset, http://www.cs.washington.edu/research/imagedatabase/groundtruth/2005
- [10] Glotin H., Tollari S.: Fast Image Auto-Annotation with Visual Vector Approximation Clusters, CBMI 2005, http://sis.univ-tln.fr/tollari/ ARTICLES/CBMI2005/TOLLARI-CBMI2005.pdf
- [11] Ye J., Zhou X., Pei J., Chen L., Zhang L.: A Stratification-Based Approach to Accurate and Fast Image Annotation, In Proceedings of the 6th International Conference on Web-Age Information Management (WAIM'05), Hangzhou, China, October 11-13, 2005. WAIM 2005: 284-296 http://www.cs.sfu.ca/ jpei/publications/annotation-waimO5.pdf
- [12] Virga P., Duygulu P.:Systematic Evaluation of Machine Translation Methods for Image and Video Annotation, In Proceedings of The Fourth International Conference on Image and Video Retrieval (CIVR 2005), Singapore, July 20-22, 2005. Also published in Lecture Notes in Computer Science, Vol. 3568/2005 pp. 174-183. http://www.cs.bilkent.edu.tr/ duygulu/papers/CIVR2005-annotation.pdf
- [13] Kwasnicka H., Paradowski M..: Multiple Class Machine Learning Approach for Image Auto-Annotation Problem, In Proceedings of The Sixth International Conference on Intelligent Systems Design and Applications (ISDA2006), 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0022-0002