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ABSTRACT 

The paper presents a theory of a metal-semiconductor contact biased by dc voltage with 
superimposed small ac signal. Theoretical considerations based on general transport equations 
enabled to derive equations useful for admittance and impurity profiling measurements of 
materials properties. 

1. Introduction 

Schottky barrier contacts are essential parts of 
many semiconductor devices and also may serve as 
a valuable tool for extracting some important material 
parameters [1]. Mercury Schottky barrier makes this 
tool non-destructive [2]. Schottky barrier contact 
capacitance-voltage characteristics is used for 
extracting impurity profiles while in the case of 
admittance measurements one should measure C-V 
characteristics with test signal frequency and 
temperature as parameters [3]. Theory presented in 
the paper based on general transport equations 
enables to calculate structure admittance for various 
materials parameters. 

2. Static characteristic 

2.1. Transport equations 

In the 1D case of Schottky barrier contact 
presented in Fig. 1, the value of total electric current 
density in semiconductor remains constant, therefore 
it is purposeful to assume it as a basic quantity. In 
order to describe the static characteristic of the 
considered structure the total current density Jo is 
defined as shown in Eq. (1). 
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where σo is total conductivity, Eo is electric field 
intensity, σno (σpo) is electron (hole) conductivity, 
no (po) is electron (hole) concentration, β = q/kT, k is 
Boltzmann constant, T is temperature, q is elementary 
charge. 

The first addend in Eq. (1) determines charge 
carriers convection, the second, electron and hole 
diffusion current. Equation (1) is a modification of 
Shockley’s equations [4] defining the electron and 
hole currents. 

The basic theory assumption is, that the constant 
value of current density Jo is given. The second 
assumption is the lack of excess charge carriers or  
very low carrier lifetime. In that case, from the law of 
mass action it results that: 
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where ni is intrinsic carrier concentration. 
By differentiating the above equation we obtain: 
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Substituting this equation to (1) we obtain formula: 
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from which one can derive equivalent differential 
equations satisfied by no or po: 

Fig. 1. Band model of Schottky barrier contact. 
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The space charge layer plays important role in the 
admittance and impurity profiling measurements, so 
one should formulate the Poisson’s equation. 

 

)( ADoo
s

o NNnpq
dx

dE
−+−=

ε
               (6) 

 

where εs is dielectric constant, ND and NA are donor 
and acceptor concentrations, which are assumed to be 
fully ionized and dependent only on x-coordinate, but 
not dependent on concentrations no and po. 

From Eq. (2) it is clear that to determine electron 
and hole concentration it is sufficient to give one of 
them. It is easy to obtain from Eq. (2) that: 
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so, one can write the Poisson’s equation in the form: 
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Equations (5) and (8) determine the system of first- 
-order non-linear differential equations which are 
satisfied by parameters no and Eo, being the functions 
of x-coordinate. The difference ND − NA is treated as 
a given function f(x). 

2.2. Boundary conditions 

1) x = w 
 

Assuming sufficiently large w, one can accept, 
that for x = w space charge is equal zero, hence 
dEo/dx = 0 and from Eq. (8) we obtain: 
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and then 
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2) x = 0 

 

It is assumed, that Schottky barrier is formed on 
n-type and has an intimate contact with semi- 
conductor. The surface states are neglected. Accord- 
ing to [5] we obtain: 
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where Nc is effective conduction band density of 
states, A* is Richardson constant, φb is Schottky 
barrier height. This formula follows from emission-
diffusion theory [6]. 

3. External ac-bias superimposed on 
structure static characteristic 

3.1. Transport equations for ac components 

When the external ac-bias is superimposed on 
static characteristic, the transport parameters are time 
dependent, so the total current density must contain 
the additional component − displacement current. In 
this instance total current J for the 1D case is 
dependent on time, but not on x-coordinate and can 
be presented as an expression: 
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where σ − conductivity and E − electric field intensity, 
are transport parameters dependent on time and on x-
coordinate. 

From Eq. (12), which is a generalization of formu- 
la (4), one can derive differential equation of electron 
concentration n similarly to Eq. (5), and namely: 
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Poisson’s equation for E will have the form anal- 
ogical to (8) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

∂
∂

AD
i

s

NNn
n
nq

x
E 2

ε
           (14) 

because we think, that the law of mass action (2) is 
also valid for concentrations of time-dependent 
variables. Possible deviations from this law can last 
only for very short period of time of the order of 
lifetime which we assume as a close to zero. 

In order to take into account ac bias of radial 
frequency ω  superimposed on static characteristic 
we assume the following expressions specifying J, n, 
σ and E. 
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where EnJ ˆ,ˆ,ˆ,ˆ σ  are complex amplitudes of ac 
components, dependent only on x-coordinate but not 
dependent on time. 

The quantities Jo, no, so and Eo specify static 
characteristic discussed in Section 2. 

In order to formulate the equations satisfied by n̂  
and Ê one should utilize Eqs. (13) and (14). The 
quantities ΔJ, Δn, Δσ and ΔE are helpful in deriving 
these equations. 

Corresponding transformations presented in 
Appendix A1 have been realized under following 
assumptions: 
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1. The given value Ĵ  satisfies as inequality 
oJJ <<ˆ . 

2. First order components are only taken into 
account. The components of frequency ω2  or 
greater are rejected. 
Taking advantage of results of Appendix A1 we 

can write: 
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The above formulas form set of linear ordinary 
differential equations which are satisfied by complex 
amplitudes n̂  and. Ê  Coefficient of n̂  and Ê  are 
functions of no and Eo, which should be calculated by 
solving Eqs. (5) and (6), specifying static character- 
istic. The parameters no and Eo are functions of 
argument x. The amplitude of alternating current 
density Ĵ  is a quantity independent on x, what 
follows in the case of 1D, from the continuity 
equation of total current density. The value of current 
density Ĵ  have to be given and for calculation 
simplification can be specified by real number. 

3.2. Boundary conditions for ac external bias 

1) x = w 
It is assumed that, in the vicinity of x = w, 

sufficiently distant from structure depletion space 
carriers concentrations are independent on time. So in 
that case one should accept condition: 

 

.0)(ˆ =wn                             (21) 
2) x = 0 

Boundary condition (11) can be generalized to 
obtain relation between concentration n and current J. 
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Substracting from this expression relation (11) we 
obtain according to formulas (15) and (16): 
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4. The structure under an applied voltage 

4.1. Static voltage 

According to results of [4] introducing here 
common level ϕso for electrons and holes, the current 

density Jo can be determined also in the following 
way: 
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The above expression is fully equivalent to relation 
(1) and enables to determine the difference 

)()0( wsoso ϕϕ − . In order to obtain complete voltage 
on the structure one should add the voltage Uemo as it 
results from energy diagram presented in Fig. 1. 

Then the static voltage Uo applied to structure is 
equal: 
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in accordance with Eq. (37) derived in [5]. 

4.2. Alternating bias voltage 

In the general case we have 
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Taking into account only variables one can obtain: 
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so the voltage connected with Fermi level is given in 
the form: 
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while the voltage increment ΔUem resulting from 
emission characteristic (formula (37) [5]) is given by: 
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passing to complex amplitudes one can obtain: 
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because total eternal bias on the structure is given by 
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The amplitude of variable component of the 
voltage as a function of variable component of the 
current is dependent on the static current Jo, Schottky 
barrier height, temperature, total conductivity σo, 
angular frequency ϖ  and variable components of the 
conductivity and electric field intensity. Using Eq. 
(34) one can calculate structure admittance as: 
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Appendix A1 

In order to obtain equations satisfied by Δn and 
ΔE in linear approximation, one should find 
increments of particular functions occurring in Eqs. 
(13) and (14). 

Equation (13) 

LHS of Eq. (13) 
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Δσ has not been taken into account in case c), 
because the obtained product ΔσΔE as a second order 
term has been discharged, moreover we take 
advantage of denotation (18). 

Connecting formulas (A1.1) − (A1.4) in accord- 
ance to Eq. (13) one can obtain: 

 

.1

1

2

2

JnEin

JnnEJ

EinEnn

JnJnnJ
x
n

o

o

o

s
o

o

o
oo

o

o

o

s
ooo

o

o

o
oo

o

o

Δ
σ
βΔϖ

σ
εβ

σΔ
σ

βΔ
σ

β

Δω
σ
εβΔβΔβΕ

Δ
σ

βσΔ
σ

βΔ
σ

βΔ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=−−−

−+−=
∂

∂

 

(A1.5) 
Now it is needed to determine the relationship 
between Δσ and Δn. 

Applying mass action law one can obtain: 
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where μn(μp) is electrons (holes) mobility. 
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Substituting (A1.8) into (A1.5) one can obtain: 
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(A1.9) 
where Δn, ΔE are searched variables, ΔJ is given 
quantity, Jo, σo, Eo, no are quantities calculated for 
static characteristic. Replacing variables Δn, ΔE, ΔJ 
through expressions occurring in (15) − (18) and re- 
moving common factor tie ω  we have: 
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Equation (14) 

LHS of Eq. (14) 
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RHS of Eq. (14) is obtained as follows: 
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In that case we have: 

 
 

.12

2

n
n
nq

x
E

o

i Δ
ε

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

∂
∂

          (A1.13) 

 
Making use of denotations in Eqs. (16) and (18) one 
can obtain: 
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