Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Optical diffraction tomography (ODT) applied to measurement of optical microelements is limited by low dynamic range, i.e., only objects with small deviations of refractive-index distribution can be measured. Therefore in this paper the limitations and errors of ODT are investigated throughout extensive numerical experiments. It is shown that these errors can be reduced by introduction of additional numerical focusing in the tomographic reconstruction algorithm. Additionally, new tomographic reconstruction algorithm using back propagation in reference medium for optical microelements measurement with known design is proposed. This hybrid reconstruction algorithm allows significant extension of ODT applicability in measurement of elements having large deviations of refractive-index distribution.
Wydawca
Czasopismo
Rocznik
Tom
Strony
102--109
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
autor
autor
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Św. A. Boboli Str., 02-525 Warsaw, Poland, t.kozacki@mchtr.pw.edu.pl
Bibliografia
- 1. M. Born and E. Wolf, "Principles of Optics", Cambridge University Press, 1999.
- 2. C.V. Vest, "Interferometry of strongly refracting axisymmetric phase objects", Appl. Opt. 14, 1601-1606 (1975).
- 3. T.C. Wedberg, J.J. Stamnes, and W. Singer, "Comparison of filtered backpropagation and backprojection algorithms for quantitative tomography", Appl. Opt. 34, 6575-6581 (1995).
- 4. H. Aben, A. Errapart, L. Ainola, and J. Anton, "Photoelastic tomography for residual stress measurement in glass", Opt. Eng. 44, 093601 (2005).
- 5. W.L. Howes and D.R. Buchele, "Optical interferometry of inhomogeneous gasses", J. Opt. Soc. Am. 56, 1517-1528 (1966).
- 6. E. Wolf, "Determination of the amplitude and the phase of scattered fields by holography", J. Opt. Soc. Am. 60, 18-20 (1970).
- 7. S.K. Mangal and K. Ramesh, "Determination of characteristic parameters in integrated photoelasticity by phase-shifting technique", Opt. Lasers in Eng. 31, 263-278 (1999).
- 8. J. Hsieh, "Computed Tomography", SPIE Press, Bellingham, 2003.
- 9. C.J. Dash, "One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods", Appl. Opt. 31, 1146-1152 (1992).
- 10. A.J. Devaney, "A filtered backpropagation algorithm for diffraction tomography", Ultrasonic Imaging 4, 336-350 (1982).
- 11. P. Guo and A.J. Devaney, "Comparison of reconstruction algorithms for optical diffraction holography", J. Opt. Soc. Am. A22, 2338-2347 (2005).
- 12. C.M. Vest, "Tomography for the properties of materials that bend rays: a tutorial", Appl. Opt. 24, 4089-4094 (1985).
- 13. N. Sponheim, L.J. Geljus, I. Johansen, and J.J. Stamnes, "Quantitative results in ultrasonic tomography of large objects using line sources and curved detector arrays", IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38, 370-379 (1991).
- 14. K.H Brenner and W. Singer, "Light propagation through microlenses: a new simulation method", Appl. Opt. 32, 4984-4988 (1993).
- 15. T. Kozacki, P. Kniazewski, and M. Kujawinska, "Photoelastic tomography for birefringence determination in optical microelements", Fringe 2005, 5th Int. Workshop on Automatic Processing of Fringe Patterns, 226-229, Springer, 2005.
- 16. Q.H. Liu, "The PSTD algorithm: a time-domain requiring only two cells per wavelength", Microwave Opt. Technol. Lett. 15, 158-165 (1997).
- 17. P. Kniazewski, T. Kozacki, M. Kujawinska, K. Szaniawska, and T.R. Woliński, "Application of the photoelastic tomography to measurement of refractive indices in optical anisotropic microelements", Proc. SPIE 6188, 61880H (2006).
- 18. Y. Cheng and A.J. Devaney, "Inverse scattering and diffraction tomography in cylindrical background media", J. Opt. Soc. Am. A23, 1038-1047 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0021-0006