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ABSTRACT 

In the work we present self-consistent solutions of Poisson and Schrödinger equations which 
describe electron states in coupled quantum dots. Results for two neighbouring quantum dots 
formed in an electrostatic way are discussed. Zero-dimensional electron gas is investigated in 
the structure proposed by Kastner [1] and presented in our earlier works [2−4]. In the work 
results of simulations performed in three- and two-dimensional space are shown. We included 
Hartree potential for modeling Coulomb interactions among electrons in the system. We also 
considered the exchange and correlation potentials which ensured that each discrete energy 
level was occupied by only one electron. The exchange and correlation potentials were taken 
into account with the help of the Local Density Approximation (LDA). 

1. Introduction 

Low-dimensional devices appear as very 
perspective for various applications in modern 
electronics. For example, zero-dimensional electron 
gas (0DEG), which is formed in quantum dots (QDs), 
gives many possibilities leading to miniaturization of 
electronic circuits together with reducing their power 
consumption. Furthermore, such miniaturized devices 
seem very promising in the aspect of making the use 
of electron spin. 

In the work we study properties of two coupled 
quantum dots (CQDs) which are arranged in the 
structure based on GaAs/AlGaAs heterojunction 
(Fig. 1). The structure is slightly modified compar- 
ing to the original device which was firstly proposed 
by Kastner [1]. As it is shown in Fig. 1 voltages 
applied to metallic electrodes allow to create 2DEG 
(it can be done by the use of UGS > 0) and to control 

its density. The upper electrodes E, biased with 
voltages UES1, UES2 of the same value (UES < 0), 
deplete the electron gas locally. It is being done 
mainly in the regions under the mentioned electrodes. 
Such a process is possible because of the character of 
the upper gate E and i-GaAs contact which forms 
Schottky barrier. 

In our previous papers we studied electronic states 
of a single QD, formed in the same type of the structure 
[2−4]. We tested two types of numerical method for 
analyzing the problem in 2D space [2]. Now, our scope 
is to apply one of these methods and to describe 
electron states in a system of two QDs. Additionally, 
we supplemented the method by enclosing the 
influence of exchange and correlation effects. 

2. Method 

Potential distribution over the structure is 
described by Poisson equation in the form: 

Fig. 1. The structure of two coupled quantum dots. 

 

( ) ( ) ( zyxV ,,, =−=Δ rrr
ε
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where ρ(r)denotes charge density in the regions of 
2DEG, neighbouring with source and drain – Fig.1. 
In order to find V(r) values of the potential for 
metallic electrodes: G, D, S, E were specified. 
Undoped layers of AlGaAs and GaAs were treated as 
dielectrics with different electrical permitivities ε= 
= ε0εr. For GaAs layers εr was taken as 12.85 and for 
AlGaAs region εr was equal to 13.18. 
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Because of the fact that charge density ( )rρ  is not 
known function, Eq. (1) must be solved in a self-
consistent way.  

We searched for the potential ( )rV  in the form of 
single layer potentials: 
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In the above equation 
kSσ  describe charge densities 

corresponding to the single layer potentials at the 
surfaces , which define the boundaries of k-th 
region. In the same equation 

kS
r  is the distance 

between any point pk of k-th region and any point 
laying on the boundary surfaces of the region. To 
solve the Eqs. (1) and (2) boundary element method 
and Gauss method were used [4]. As a result three-
dimensional potential distribution over the whole 
structure was obtained. 

If voltages UGS and UES have suitable values, two 
quantum wells arise in the regions between the pairs 
of electrodes E. Till now, we did not take into 
account the charge which may accumulate in these 

wells. The charge can be considered as ∑ . Wave 

functions 
=

N

i
i

0
ψ

iψ  are the solutions of N Schrödinger 
equations which are written for each electron 
separately: 
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Effective potential  takes the form: ieffV
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and regards to the influence of biasing voltages − 
throughout . It also includes Coulomb interaction 
among electrons in the system due to Hartree 
potential: 
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Finally it complies exchange and correlation effects 
according to the Local Density Approximation [5]. 

The expression for Vexi(r) was chosen in the form 
which depends on the electron spin polarization. For 
electrons with spin up we used notation: 
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and for electrons with spin down: 
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The degree of polarization iξ  is described as 
( ) ( )↓↑↓↑ +− iiii ρρρρ / , where 

↓↑ ii ρρ ,  are local 

electron densities, referring to electrons with spin up 
and spin down, with the exception of electron i. Bohr 
radius ( ) nm15.10/4 2*2

0 == Γ ema GaAshπε  is specific 
for GaAs due to the electron’s effective mass , 
which was taken as 0.067 of the free electron mass 
(0.067m

Γ*
GaAsm

0). 
Correlation effects were taken into account 

according to the potential: 
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with values of coefficients: d1 = 2.26, d2 = 2.635, d3 = 
= 2.007; d4 = 0.70597, and C0 = −0.3568; C1 = 1.13; 
C2 = 0.9052; C3 = 0.4165 [5]. 
The variable w is given as: ( ) 2/1

0
−

ia πρ . Charge 

density ρi is determined for the i-th electron in the 
system and concerns all remaining electrons in the 
wells. 

Effective potential Veff i does not only confine 
electrons in the dots but simultaneously depends on 
the density distribution of 0DEG. For this reason self-
consistent procedure must be performed. In the 
procedure both − potential and charge density 
distributions are adjusted to each other. 

To solve Eq. (3) we used numerical methods of 
finding eigenvalues and eigenvectors for the real and 
symmetric eigenvalue problem. 

Equations (3)−(8) were considered only in the 
plane of 2DEG. It was possible due to the verified 
feature of the potential ( )rV  which confines electrons 
in z direction (perpendicular to heterointerface) much 
stronger than in 2DEG plane (x-y). In that case 

( )yx,=r . Furthermore, the proper “slice” of the 
potential ( )zyxV ,,  must be chosen, i.e. ( ) =yxV ,  
= ( )max,, zzyxV = . The value of zmax can be found on 
the basis of the Schrödinger equation solution in z 
direction: 
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where m* is 0.067m0 for GaAs and 0.092m0 for 
AlGaAs layer. V(z) is the potential V(x0, y0, z) with 
co-ordinates x0, y0 corresponding to the central point 
of the dot. 

As a result of calculations we obtained:  
1) potential distribution over the whole structure  
    V(x,y,z) which originates from the biasing  
    voltages; 
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2) energy spectrum of the system in the form  
    Exy + Ez1; 
3) wave functions ψi(x,y) and charge density ρ of  
    all electrons accumulated in quantum wells, 
4) degree of system polarization ξ = (ρ↑ − ρ↓)/ 
    /(ρ↑ −+ρ↓); 
5) the strength of electron-electron interaction in the  
    form of Hartree, exchange and correlation 
    potentials. 

 

3. Results 

We simulated the structure with length 
L = 1700 nm, width W = 600 nm and height 
H = 740 nm. Figure 2a presents the top view of the 
model. Four upper electrodes E are identical. 
Configuration of the electrodes enables to model each 
dot in the arrangement independently. In Fig. 2a two 
axes of symmetry are marked. The symmetry of the 
structure was used to optimize calculations of the 
potential. Furthermore, the symmetry allows to 
expect symmetrical shape of the potential.  

In Fig. 2b the side view of the device is presented. 
We marked the remaining parameters of the structure 
in it. Parameter ze denotes the thickness of the 
electrodes E. Our earlier numerical research proves 
that the value of ze influences the shape of the 
potential significantly. This is the reason for which 
the value of ze must be assumed with a great care. For 
our calculations we took geometrical parameters of 
the structure (all expressed in nm) as follows: 
zb = 300, zs = 50, ze = 50, z1 = 100, z2 = 70.  

 

 
Fig. 2. Top view (a) and side view (b) of the device. In both 
figures geometrical parameters of the numerical model are 
marked. 

 
In our calculations voltages UGS and UES1 = UES2 

were taken as 390 mV and –245 mV, respectively. 
They allowed to create two quantum wells with the 
same geometry and depth. The Table 1 shows 
remaining parameters of the structure and their 
values. 

 

Table 1. The values of the simulations parameters 

Basic parameters of the structure 
L = 1700 nm zb = 300 nm La = 100 nm Ls = 100 nm
W = 600 nm zs = 50 nm Lb = 50 nm wa = 150 nm
H = 740 nm ze = 50 nm Lc = 500 nm wb = 150 nm
z1 = 100 nm z2 = 70 nm Le = 650 nm  

 
The calculation of the potential V(r) was 

performed with the use of 3D discretization mesh. 
The distance between points of the mesh in z 
direction was equal to 0.25 nm and in the both 
remaining directions (x and y) it was 5 nm. For the 
simulated device the mesh had a colossal number of 
the points, therefore only Boundary Element Method 
and single layer potential functions permit to realize 
simulations in relatively short time. The potential in 
every point of the mesh was calculated with the 
accuracy of 10−2 meV and boundary conditions were 
fulfilled with the accuracy of 10-4 %. 

Analysis of the Eq. (9) shows that the base energy 
level Ez1 is located at –4.2 meV that is 17.7 meV over 
the bottom of the well (Fig. 3). All energies obtained 
from calculations are referred to zero which is also 
the potential of source. As it is shown in Fig. 3, the 
maximum of wave function ψ1(z) is very close to 
heterojunction. Location of the maximum at 608.75 nm 
determined the selection of V(x,y,zmax) for further 
analysis in xy plane. Figure 4 presents the potential 
which was taken into account in our two-dimensional 
problem. In this figure also the central point of 
quantum dot (x0, y0) = (−325 nm, 0) is marked. 
Potential V(z) for the point was shown in Fig. 3.  
 

 
Fig. 3. Quantum well formed at the GaAs/AlGaAs interface 
(black line and left axis). Energy of the ground state Ez1 (red 
line) and corresponding wave function ψ1(z) (green line and 
right axis). The inset shows the neighbourhood of the hetero- 
junction. 

Self-consistent solutions of Eq. (3) were found. 
They are wave functions ψi and energy levels Ex,y for 
4 electrons in CQDs. Solutions respect the assumed 
convergence criterion. In our case that means that the 
difference of Veff i in two subsequent iterative steps 
was lower than 0.1% at any point of the discretization 
mesh.  
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Fig. 4. Potential V(x,y) which forms CQDs. 

 

Figure 5 presents cross-section of charge density 
distribution, calculated as ( )∑

=

=

4

1

2,
N

i
i yxe ψ  and correspond- 

ing distribution of potential energy eVeff(x,y). In the 
same figure occupied energy levels E0 and E1 are 
shown. The were determined as Ez1 +  Ex,y. The levels 
E0 and E1 only slightly differ to each other and they are 
identical in both wells. Each of the level is occupied by 
only one electron. This is the consequence of 
calculations including the exchange potential. It should 
be noted that the exchange term always gives negative 
contribution to the total energy of 0DEG. 

 

 
Fig. 5. Cross-sections of charge density (red circles) and 
potential distribution (black squares) after self-consistent 
procedure, performed in xy plane. There are also energy levels 
E0, E1 marked in each quantum well. 

 

It can be seen that charge density in both dots has 
slightly larger values at the sides where it “feels” the 
neighbouring dot. We expected the interaction 
between charges accumulated in two wells but rather 
opposite effect to that what we have observed. It can 
be explained if we consider rather small distance 
between the outer barriers of the potential and the 
boundaries of the structure. In calculations (solution 
of the Eq. (3)) we assumed boundary conditions 
which state that wave functions decay at the 
boundaries of the model. It corresponds to the hard 
walls of the potential. In our case the influence of the 
boundary conditions is stronger than interaction of 
two neighbouring dots. Moreover, the upper 
electrodes E, polarized with the potential UES, form 
quite wide potential barrier between the dots. Two 
wells are separated by the distance of about 360 nm 

at energy equal to zero. The bottoms of the wells are 
separated by 650 nm. Distance between these wells is 
too large to cause a significant interdot interaction. 

Total charge density ρ is the sum of densities found 
for electrons with spin up (ρ↑) and spin down (ρ↓). In 
our case N = 4 so each of the wells contains two 
electrons with opposite spins. Figure 6 presents the 
degree of polarization determined for considered CQDs. 

 

 
Fig. 6. Polarization of the electron gas confined in two quantum 
wells. 

4. Conclusion 

In the paper we presented results of simulations 
performed for two coupled quantum dots. We found 
the potential distribution for the structure and 
electronic states in two quantum wells. We included 
exchange and correlation interaction between 
electrons in the system. In our case the interdot 
interaction is not observed. The dots are too far from 
each other and the influence of boundary conditions 
(hard walls of the potential) is too strong. 

It appears interesting to test how the distance 
between the dots affects the charge density 
distribution and spin polarization of the system. This 
will be the next step of our simulations. 

CQDs provide the opportunity to tune the interdot 
tunneling. In the structure which we considered it can 
be done by modification of UES2 in relation to UES1. 
We want to expand our research in that direction and 
to find I(V) characteristics of the system. 
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