PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum structures for multiband photon detection

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work describes multiband photon detectors based on semiconductor micro- and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ~6 and ~17 µm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.
Słowa kluczowe
Twórcy
  • Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA, uperera@gsu.edu
Bibliografia
  • 1. A. Goldberg, P.N. Uppal, and M. Winn, "Detection of buried land mines using a dual-band LWIR/LWIR QWIP focal plane array", Infrared Phys. & Technol. 44, 427 (2003).
  • 2. B. Kochman, A.D. Stiff-Roberts, S. Chakrabarti, J.D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, "Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors", IEEE. J. Quant. Electron. 39, 459 (2003).
  • 3. H.C. Liu, M. Gao, J. McCaffrey, Z.R. Wasilewski, and S. Fafard, "Quantum dot infrared photodetectors", Appl. Phys. Lett. 78, 79 (2001).
  • 4. L. Jiang, S.S. Li, N.T. Yeh, J.I. Chyi, C.E. Ross, and K.S. Jones, "In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K", Appl. Phys. Lett. 82, 1986-1988 (2003).
  • 5. A. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D.A. Cardimona, and S.W. Kennerly, "High-responsivity, normal-incidence long-wave infrared (λ p ~7.2 µm) InAs/In0.15Ga0.85As dots-in-a-well detector", Appl. Phys. Lett. 81, 1369 (2002).
  • 6. B. Aslan, H.C. Liu, M. Korkusinski, S.J. Cheng, and P. Hawrylak, "Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors", Appl. Phys. Lett. 82, 639 (2003).
  • 7. Z. Ye and J.C. Campbell, "InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers", J. Appl. Phys. 92, 7462-7468 (2002).
  • 8. J. Phillips, K. Kamath, and P. Bhattacharya, "Far-infrared photoconductivity in self-organized InAs quantum dots", Appl. Phys. Lett. 72, 2020 (1998).
  • 9. S. Maimon, E. Finkman, and G. Bahir, "Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors", Appl. Phys. Lett. 73, 2003 (1998).
  • 10. D. Pan, E. Towe, and S. Kennerly, "Normal-incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors", Appl. Phys. Lett. 73, 1937 (1998).
  • 11. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S.G. Matsik, and A.G.U. Perera, "Three-colour (λ p1 ~3.8 µm, λ p2 ~8.5 µm, and λ p3 ~23.2 µm) InAs/InGaAs quantum-dots-in-a-well detector", Appl. Phys. Lett. 83, 2745-2747 (2003).
  • 12. G. Ariyawansa, A.G.U. Perera, G.S. Raghavan, G. von Winckel, A. Stintz, and S. Krishna, "Effect of well width on three colour quantum dots-in-a-well infrared detectors", IEEE Photon. Technol. Lett. 17, 1064 (2005).
  • 13. B.F. Levine, "Quantum-well infrared photodetectors", J. Appl. Phys., 74, R1-R81 (1993).
  • 14. A. Amtout, S. Raghavan, P. Rotella, G. v. Winckel, A. Stintz, and S. Krishna, "Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector", J. Appl. Phys. 96, 3782-3786 (2004).
  • 15. S.V. Bandara, S.D. Gunapala, J.K. Liu, E.M. Luong, J.M. Mumolo, W. Hong, D.K. Sengupta, and M.J. McKelvey, "10.16 µm broad band quantum well infrared photodetector", Appl. Phys. Lett. 72, 2427 (1998).
  • 16. A.G.U. Perera, W.Z. Shen, S.G. Matsik, H.C. Liu, M. Buchanan, and W.J. Schaff, "GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28 µm", Appl. Phys. Lett. 72, 1596-1598 (1998).
  • 17. P. Bhattacharya, X.H. Su, S. Chakrabarti, G. Ariyawansa, and A.G.U. Perera, "Characteristics of a tunnelling quantum dot infrared photodetector operating at room temperature", Appl. Phys. Lett. 86, 191106 (2005).
  • 18. J. Urayama, T.B. Norris, J. Singh, and P. Bhattacharya, "Observation of phonon bottleneck in quantum dot electronic relaxation", Phys. Rev. Lett. 86, 4930 (2001).
  • 19. E. Kim, A. Madhukar, Z. Ye, and J.C. Campbell, "High detectivity InAs quantum dot infrared photodetectors", Appl. Phys. Lett. 84, 3277 (2004).
  • 20. H. Jiang and J. Singh, "Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study", Phys. Rev. B56, 4696-4701 (1997).
  • 21. W.Z. Shen, A.G.U. Perera, H.C. Liu, M. Buchanan, and W.J. Schaff, "Bias effects in high performance GaAs homojunction far-infrared detectors", Appl. Phys. Lett. 71, 2677-2679 (1997).
  • 22. D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, "Design and optimization of GaAs/AlGaAs heterojunction infrared detectors", J. Appl. Phys. 96, 4588-4597 (2004).
  • 23. H.C. Liu, P.H. Wilson, M. Lamm, A.G. Steele, Z.R. Wasilewski, J. Li, M. Buchanan, and J.G. Simmonsa, "Low dark current dual band infrared photodetector using thin AlAs barriers and G-X mixed intersubband transition in GaAs quantum wells", Appl. Phys. Lett. 64, 475 (1994).
  • 24. H.C. Liu, C.Y. Song, A. Shen, M. Gao, Z.R. Wasilewski, and M. Buchanan, "GaAs/AlGaAs quantum-well photodetector for visible and middle infrared dual-band detection", Appl. Phys. Lett. 77, 2437 (2000).
  • 25. M.P. Touse, G. Karunasiri, K.R. Lantz, H. Li, and T. Mei, "Near- and mid-infrared detection using GaAs/InxGa1xAs/InyGa1yAs multiple step quantum wells", Appl. Phys. Lett. 86, 093501-1 (2005).
  • 26. K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, and R.J. Malik, "Infrared photoelectron tunnelling spectroscopy of strongly coupled quantum wells", Phys. Rev. B39, 8029 (1989).
  • 27. S. Chakrabarti, X.H. Su, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, "Characteristics of a multicolour InGaAs.GaAs quantum-dot infrared photodetector", IEEE Photon. Technol. Lett. 17, 178-180 (2005).
  • 28. D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, V.I. Gavrilenko, and A.A. Belyanin, "High performance single emitter homojunction interfacial work function far infrared detectors", J. Appl. Phys. 95, 512-519 (2004).
  • 29. S. Adachi, "Refractive indices of III-V compounds: Key properties of InGaAsP relevant to device design", J. Appl. Phys. 53, 5863 (1982).
  • 30. M.D. Sturge, "Optical absorption of gallium arsenide between 0.6 and 2.75 eV", Phys. Rev. 127, 768 (1962).
  • 31. G. Ariyawansa, M.B.M. Rinzan, D.G. Esaev, S.G. Matsik, G. Hastings, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, and V.I. Gavrilenko, "Near- and far-infrared p-GaAs dual-band detector", Appl. Phys. Lett. 86, 143510-143513 (2005).
  • 32. F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, "Mechanisms of recombination in GaN photodetectors", Appl. Phys. Lett. 69, 1202 (1996).
  • 33. S.K. Zhang, W.B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, R.R. Alfano, "Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain", Appl. Phys. Lett. 81, 4862 (2002).
  • 34. E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors", Semicond. Sci. Technol. 18, R33-R51 (2003).
  • 35. S.G. Matsik, M.B.M. Rinzan, D.G. Esaev, A.G.U. Perera, H.C. Liu, and M. Buchanan, "20 µm cutoff heterojunction interfacial work function internal photoemission detectors", Appl. Phys. Lett. 84, 3435-3437 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0007-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.