PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of light transmittance measurement in a finite layer of whole blood - a collimated transmittance problem in Monte carlo simulation and diffusion model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the modeling of transmittance measurement in a finite layer of whole blood. To describe light propagation in whole blood medium, a Monte Carlo simulation was used. The propagation of light in whole blood medium in the model required the assumption of photon transport approximation in highly scattering media. We have analyzed collimated-diffuse transmittance, which depended on the technique of free path length simulation. The Monte Carlo simulation was compared with the diffusion model designed for a finite incident light beam and available measurement data of whole blood optical density. The research revealed that discrepancy between the models discussed may be attributed to inaccuracy of the diffusion model due to an increase of anisotropic radiance under the thin sample conditions. Moreover, comparison of the Monte Carlo simulation versus measurement data showed that adding off-sets enabled agreement between them for hematocrit up to 60-70%, which is sufficient for many applications in oximetry. In fact, discrepancy in the Monte Carlo simulation, requiring off-sets to fit measurement data, most likely originates from measurement problem, such as divergence of light source or perturbation of light beam.
Czasopismo
Rocznik
Strony
311--331
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Chair of Electronic and Photonic Metrology, Wroclaw University of Technology, ul. Bolestawa Prusa 53/55, 50-317 Wroclaw, Poland
  • Chair of Electronic and Photonic Metrology, Wroclaw University of Technology, ul. Bolestawa Prusa 53/55, 50-317 Wroclaw, Poland
Bibliografia
  • [1] Reynolds L., Johnson C., Ishimaru A., Diffuse reflectance from a finite blood medium: applications to the modeling of fiber catheters, Applied Optics 15(9), 1976, pp. 2059-67.
  • [2] Steinke J.M., Shepherd A.P., Diffusion model ofthe optical absorbance of whole blood, Journal of the Optical Society of America A: Optics, Image Science and Vision 5(6), 1988, pp. 813-22.
  • [3] Szczepanowski R., Multiple light scattering model in blood medium using Monte Carlo method, Ph.D. Thesis, Wrocław University of Technology, Poland 2002 (in Polish).
  • [4] Tversky v., Absorption and multiple scattering by biological suspensions, Journal of the Optical Society of America 60(8), 1970, pp. 1084-93.
  • [5] Lipowsky H.H., Usami S., Chien S., Pittman R.N., Hematocrit determination in small bowel bore tubes from optical density measurements under white light illumination, Microvascular Research 20(1), 1980, pp. 51-70.
  • [6] Flock S.T., Patterson M.S., Wilson B.C., Wyman D.R., Monte Carlo modeling of light propagation in highly scattering tissues -1: Model prediction and comparison with diffusion theory, IEEE Transactions on Biomedical Engineering 36(12), 1989, pp. 1162-7.
  • [7] Flock S.T., Wilson B.C., Patterson M.S., Hybrid Monte Carlo-diffusion theory modelling of light distributions in tissue, SPIE 908, 1988, pp. 20-8.
  • [8] VAN Gemert M.J.C, Jacques S.L., Sterenborg H.J.C.M., Star W.M., Skin optics, IEEE Transactions on Biomedical Engineering 36(12), 1989, pp. 1146-54.
  • [9] Wilson B.C., A Monte Carlo model for the absorption and flux distributions of light in tissue, Medical Physics 10(6), 1983, pp. 824-30.
  • [10] Flock S.T., Wilson B.C., Patterson M.S., Monte Carlo modeling of light propagation in highly scattering tissues - II: Comparison with measurements in phantoms, IEEE Transactions on Biomedical Engineering 36(12), 1989, pp. 1169-73.
  • [11] Song Z., Dong K., Hu X.H., Lu J.Q., Monte Carlo simulation of converging laser beams propagating in biological materials, Applied Optics 38(13), 1999, pp. 2944-9.
  • [12] Roggan a., Drorschel K., Minet O., Wolff D., Muller G., The optical properties of biological tissue in the near infrared wavelength range-review and measurements, [In] Laser-Induced Interstitial Thermotheraphy, G. Muller, A. Roggan [Eds.], SPIE Press, LMZ GmbH, Berlin, pp. 10-44.
  • [13] Hahn a., Optimization of laser measuring methods for their use in extracorporeal circulation, Ph.D. Thesis, Wroclaw University of Technology, Poland 1996.
  • [14] Czerwiński M., Mroczka J., New concept of hybrid method to describe the light transmittance in terms of multiple light scattering - monodisperse distribution approximation, Optica Applicata 31(4),2001, pp. 719-29.
  • [15] Mishchenko M.I., Hovenier J.W., Travis L.D., Light Scattering by NonsphericalParticles: Theory, Measurements, and Applications, Academic Press, San Diego 2000.
  • [16] Hemenger R.P., Optical properties of turbid media with specularly reflecting boundaries: application to biological problems, Applied Optics 16(7), 1977, pp. 2007-12.
  • [17] Zdrojkowski R.J., Pisharothy N.R., Optical transmission and reflection by blood, IEEE Transactions on Biomedical Engineering 17(2), 1970, pp. 122-8.
  • [18] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A., Dabinjan R.A., Kargin B.A., The Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, New York 1980.
  • [19] Prahl S.A., Kaeijzbr M., Jacques S.L., Welch A.J., A Monte Carlo model of light propagation in tissue, SPIE Institute Series Vol. 5, 1989, pp. 102-10.
  • [20] Prahl S.A., Light transport in tissue, Ph.D. Thesis, University of Texas at Austin, 1980.
  • [21] Wang L.H., Jacques S.L., Zheng L.Q., MCML - Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine 47(2), 1995, pp. 131-46.
  • [22] Tycko D.H., Metz M.H., Epstein E.A., Grinbaum A., Flow-cytometric light scattering measurements of red blood cell volume and hemoglobin concentration, Applied Optics 24(9), 1985, pp. 1355-65.
  • [23] Szczepanowski R., Guszkowski T., Mroczka J., InHuence of osmotic pressure on light scattering by i-ed blood cells, IMEKO XVI Congress Wien, vol.VII, Topic 13, 2000, pp. 119-24.
  • [24] Mohandas N., Clark M.R., Jacobs M.S., Shohet S.B., Analysis of factor regulating erythrocyte deformability, Journal of Clinical Investigation 66(3), 1980, pp. 563-73.
  • [25] Ganong W., Review of Medical Physiology, Chap. 6-27, Appleton and Lang, Norwalk 1991.
  • [26] Mroczka J., Wysoczanski D., Onofri F., Optical param^eters and scattering properties of red blood cells, Optica Applicata 32(4), 2002, pp. 691-700.
  • [27] Mishchenko M.I., Travis L.D., Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly orientated, rotationally symmetric scatteres, Journal of Quantitative Spectroscopy and Radiative Transfer 60(3), 1998, pp. 309-24.
  • [28] Schmitt J.M., Mihm F.G., Meindl J.D., New methods for whole blood oximetry, Annals of Biomedical Engineering 14(1), 1986, pp. 35-52.
  • [29] Schmitt J.M., Xiong Z.G., Miller J., Measurement of blood hematocrit by dual-wavelength near-IRphotoplethysmography, Proceedings of SPIE 1641, 1992, pp. 150-61
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0006-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.