Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fuzzy clustering techniques, especially fuzzy c-means (FCM) clustering algorithm, have been widely used in automated image segmentation. However, as the conventional FCM algorithm does not incorporate any information about spatial context, it is sensitive to noise. To overcome this drawback of FCM algorithm, a novel penalized fuzzy c-means (PFCM) algorithm for image segmentation is presented in this paper. The algorithm is formulated by incorporating the spatial neighbourhood information into the original FCM algorithm with a penalty term. The penalty term acts as a regularizer in this algorithm, which is inspired by the neighbourhood expectation maximization (NEM) algorithm and is modified in order to satisfy the criterion of the FCM algorithm. Experimental results on synthetic, simulated and real images indicate that the proposed algorithm is effective and more robust to noise and other artifacts than the standard FCM algorithm.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
309--315
Opis fizyczny
Bibliogr. 22 poz., il.
Twórcy
autor
- Key laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, 710049 Xi'an, China
autor
- Key laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, 710049 Xi'an, China
autor
- Key laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, 710049 Xi'an, China
Bibliografia
- 1. S.K. Fu and J.K. Mui, "A survey on image segmentation", Pattern Recognition 13, 3-16 (1981).
- 2. R.M. Haralick and L.G. Shapiro, "Image segmentation techniques", Comput. Vision Graphics Image Process. 29, 100-132 (1985).
- 3. N. Pal and S. Pal, "A review on image segmentation techniques", Pattern Recognition 26, 1277-1294 (1993).
- 4. W. Skarbek and A. Koschan, "Colour image segmentationa survey", Tech. Rep. 32, (1994).
- 5. Y.J. Zhang, "A survey on evaluation methods for image segmentation", Pattern Recognition 29, 1335-1346 (1996).
- 6. H.D. Cheng, X.H. Jiang, Y. Sun, and J. Wang, "Colour image segmentation: advances and prospects", Pattern Recognition 34, 2259-2281(2001).
- 7. L.A. Zadeh, "Fuzzy sets", Inform. and Control 8, 338-353 (1965).
- 8. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York, Plenum Press, 1981.
- 9. J.C. Bezdek, L.O. Hall, and L.P. Clarke, "Review of MR image segmentation techniques using pattern recognition", Med. Phys. 20, 1033-1048 (1993).
- 10. Y.A. Tolias and S.M. Panas, "On applying spatial constraints in fuzzy image clustering using a fuzzy rulebased system", IEEE Signal Processing Letters 5, 245-247 (1998).
- 11. Y.A. Tolias and S.M. Panas, "Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions", IEEE Trans. Systems, Man, Cybernet. A28, 359-369 (1998).
- 12. J.C. Noordam, W.H.A.M. van den Broek, and L.M.C. Buydens, "Geometrically guided fuzzy C-means clustering for multivariate image segmentation", Proc. Int. Conf. on Pattern Recognition 1, 462-465 (2000).
- 13. A.W.C. Liew, S.H. Leung, and W.H. Lau, "Fuzzy image clustering incorporating spatial continuity", IEE Proc. Visual Image Signal Process. 147, 185-192 (2000).
- 14. M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty, "A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data", IEEE Trans. on Medical Imaging 21, 193-199 (2002).
- 15. X. Li, L. Li, H. Lu, D. Chen, and Z. Liang, "Inhomogeneity correction for magnetic resonance images with fuzzy C-mean algorithm", Proc. SPIE 5032, 995-1005 (2003).
- 16. M.J. Kwon, Y.J. Han, I.H. Shin, and H.W. Park, "Hierarchical fuzzy segmentation of brain MR images", Int. J. Imaging Systems and Technology 13, 115-125 (2003).
- 17. D.L. Pham and J.L. Prince, "Adaptive fuzzy segmentation of magnetic resonance images", IEEE Trans. Medical Imaging 18, 737-752 (1999).
- 18. C. Ambroise and G. Govaert, "Convergence of an EM-type algorithm for spatial clustering", Pattern Recognition Letters 19, 919-927(1998).
- 19. J.C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters", J. Cybernetics 3, 32-57 (1974).
- 20. P. Dempster, N.M. Laird, and D.B. Rubin, "Maximumlikelihood from incomplete data via the EM algorithm", J. Roy. Statist. Soc. B39, 1-38 (1977).
- 21. D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, and N.J. Kabani, "Design and construction of a realistic digital brain phantom", IEEE Trans. Med. Imaging 17, 463-468 (1998).
- 22. Available: http://www.bic.mni.mcgill.ca/brainweb/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0004-0086