PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ambipolar charge carrier transport in liquid crystals

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We review the electron transport in both smectic and discotic liquid crystals with the updated experimental results, and discuss the ambipolar carrier transport in these materials. We indicate that the intrinsic nature of charge carrier transport in liquid crystals is probably ambipolar, in which both electronic and ionic charges are transported basically irrespective of their polarity, and that the ionic transport in these liquid crystals is extrinsic and induced by photo-ionization of chemical impurities. Furthermore, we discuss the importance of this unique features of charge carrier transport in the liquid crystals in the future development of new optoelectronic device applications that cannot be achieved with conventional organic semiconductors.
Twórcy
autor
  • Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 , Japan
autor
  • Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 , Japan
Bibliografia
  • 1. P.M. Borsenberger, and D.S. Weiss, Organic Photoreceptors for Xerography, Marcel Dekker Inc., New York, 1998.
  • 2. J. Mort, "Transient photoinjection of holes from amorphous Se into poly (N-vinyl carbazole)", Phys. Rev. B5, 3329-3336 (1972).
  • 3. C.W. Tang and S.E. VanSlyke, "Organic electroluminescence diodes", Appl. Phys. Lett. 51, 913-915 (1987).
  • 4. J.E. Kunder, J.M. Pochan, S.R. Turner, and D.H. Minman, "Fluorenone derivatives as electron transport materials", J. Electrochem. Soc. 125, 1750-1758 (1978).
  • 5. H. Tada, H. Touda, M. Takada, and K. Matsushige, "Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions", Appl. Phys. Lett. 76, 783-785 (2000).
  • 6. Y. Yamaguchi, T. Fujiyama, and M. Yokoyama, "Bipolar-charge-transporting organic photoconductors", J. Appl. Phys. 70, 855-859 (1991).
  • 7. L.B. Lin, S.A. Jenekhe, and P.M. Borsenberger, "High electron mobility in bipolar composites of organic molecules", Appl. Phys. Lett. 69, 3496-3497 (1996).
  • 8. H. Naito, Y. Ohsawa, and S. Mimura, "Bipolar transport and charge-carrier generation in polymethylphenylsilane", Appl. Phys. Lett. 75, 376-378 (1999).
  • 9. J.E. Kaeding, B.J. Murray, W.T. Gruenbaum, and P.M. Borsenberger, "Bipolar transport in a molecularly doped polymer containing a bifunctional dopant molecule", J. Imag. Sci. Technol. 40, 245-248 (1996).
  • 10. C.C. Wu, T.L. Lui, Y.T. Lin, W.Y. Hung, and T.H. Ke, "Influence of oligomer length on carrier transport properties of oligofluorene", Appl. Phys. Lett. 85, 1172-1174 (2004).
  • 11. L.B. Shein, "Temperature independent mobility along the molecular direction of AS2S3", Phys. Rev. B 15, 1024-1034 (1977).
  • 12. D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, J. Ringsdorf, P. Schuhmacher, and K. Siemensmeyer, "Transient photoconductivity in a discotic liquid crystal", Phys. Rev. Lett. 70, 457-460 (1993).
  • 13. M. Funahashi and J. Hanna, "Fast hole transport in a new calamitic liquid crystal of 2-(4'-Hepthyloxyphenyl)-6-dodecylthiobenzothiazole", Phys. Rev. Lett. 78, 2184-2187 (1997).
  • 14. M. Funahashi and J. Hanna, "Fast ambipolar carrier transport in smectic phases of phenylnaphthalene liquid crystal", Appl. Phys. Lett. 71, 602-604 (1997).
  • 15. M. Funahashi and J. Hanna, "Anomalous high mobility in smectic E phase of a 2-phenylnaphthalene derivative", Appl. Phys. Lett. 73, 3733-3735, (1998).
  • 16. H. Tokuhiro, M. Era, and T. Tsutsui, "Novel liquid crystalline oxadiazole with high electron mobility", Adv. Mater. 10, 404-407 (1998).
  • 17. M. Funahashi and J. Hanna, "Fast ambipolar carrier transport in self-organizing terthiophene derivatives", Appl. Phys. Lett. 76, 2574-2576 (2000).
  • 18. M. Funahashi and J. Hanna, "Mesomorphic behaviors and charge transport in terthiophene derivatives", Mol. Cryst. Liq. Cryst. 410, 529-540 (2004).
  • 19. S. Mery, D. Haristory, J.F. Nicoud, D. Guillon, S. Diele, H. Monobe, and Y. Shimizu, "Bipolar carrier transport in a lamello-columnar mesophase of a sanidic liquid crystal", J. Mater. Chem. 12, 37-41 (2002).
  • 20. I. Shiyanovskaya, K.D. Singer, R.J. Twieg, L. Sukhomlinova, and V. Gettwert, "Electronic transport in smectic liquid crystals", Phys. Rev. E65, 041715 (2002).
  • 21. H. Iino, J. Hanna, R.J. Bushby, B. Movaghar, B.J. Whitaker, and M.J. Cook, "Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal", Appl. Phys. Lett. 87, 132102 (2005).
  • 22. A. Ohno and J. Hanna, "Simulated carrier transport in smectic mesophase and its comparison with experimental result", Appl. Phys. Lett. 82, 751-753 (2003).
  • 23. H. Iino and J. Hanna, "Electronic and ionic transports for negative charge carriers in smectic liquid crystalline photoconductor", J. Phys. Chem. B 109, 22120-22125 (2005).
  • 24. H. Maeda and J. Hanna, unpublished data.
  • 25. J. Warman, A.M. van de Craats, "Charge mobility in discotic materials studied by PR-TRMC", Mol. Cryst. Liq. Cryst. 396, 41-72 (2003).
  • 26. Y. Yuan, B.A. Gregg, and M.F. Lawrence, "Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(â-octoxyethyl) porphyrin films", J. Mater. Res. 15, 2494-2498 (2000).
  • 27. H. Fujikake, T. Murashige, M. Sugibayashi, and K. Ohta, "Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor", Appl. Phys. Lett. 85, 3474-3476 (2004).
  • 28. H. Nakayama, M. Ozaki, W.F. Schmidt, and K. Yoshino, "Measurements of carrier mobility and quantum yield of carrier generation in discotic liquid crystal hexahexyl-oxytriphenylene by time-of-flight method", Jpn. J. Appl. Phys. 38, L1038-L1041 (1999).
  • 29. H. Iino, J. Hanna, C. Jäger, and D. Haarer, "Fast electron transport in discotic columnar phase of triphenylene derivative, hexabutyloxytriphenylene", Mol. Cryst. Liq. Cryst. 436, 1171-1178 (2005).
  • 30. H. Iino, J. Hanna, and D. Haarer, "Electronic and ionic carrier transports in discotic liquid crystalline photoconductors", Phys. Rev. B72, 193203 (2005).
  • 31. H. Iino, Y. Takayashiki, J. Hanna, R.J. Bushby, and D. Haarer, "High electron mobility of 0.1 cm2V-1s-1 in the highly ordered columnar phase of hexahexylthiotriphenylene", Appl. Phys. Lett. 87, 192105 (2005).
  • 32. H. Iino, Y. Takayashiki, J. Hanna, and R.J. Bushby, "Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative", Jpn. J. Appl. Phys. 44, L1310-L1312 (2005).
  • 33. D. Adam, P. Schuhmacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K.H. Etzbach, H. Ringsdorf, and D. Haarer, "Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal", Nature 371, 141-143 (1994).
  • 34. M. Funahashi, and J. Hanna, "Impurity effect on charge carrier transport in smectic liquid crystals", Chem. Phys. Lett. 397, 319-323 (2004).
  • 35. H. Ahn, A. Ohno, and J. Hanna, "Detection of trace amount of impurity in smectic liquid crystals", Jpn. J. Appl. Phys. 44, 3764-3768 (2005).
  • 36. Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1982.
  • 37. P.J. Regensburger, "Optical sensitization of charge carrier transport in poly(N-vinyl carbazole)", Photochem. Photobiol. 8, 429-440 (1968).
  • 38. J. H. Sharp, "Photoconductivity of N-isopropylcarbazole and its piery chloride complex", J. Phys. Chem. 71, 2587-2596 (1967).
  • 39. A. Ohno, J. Hanna, D.H. Dunlap, and A. Cabral, "Extraction of trap distribution in organic semiconductors by transient photocurrent", Jpn. J. Appl. Phys. 43, L460-L463 (2004).
  • 40. J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K. Etzbach, K. Siemensmeyer, J. H. Wendorff, H. Ringsdorf, and D. Haarer, "Transient photoconductivity in a discotic hexagonal plastic crystal", Adv. Mater. 8, 815-819 (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0004-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.