PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Growth and properties of MOCVD HgCdTe epilayers on GaAs substrates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growth of MOCVD Hg1-xCdxTe (HgCdTe) epilayers on GaAs substrates is described. The paper focuses on the interdiffused multilayer process (IMP). In this process, the CdTe/HgTe growth times are comparable with transition times between the phases. The non-optimum flow velocities and partial pressures that may induce poor morphology and reduce growth rate characterize the growth during transition stages. The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. Due to the large mismatch between GaAs and CdTe, both (100) and (111) growth may occur. It mostly depends on substrate disorientation and preparation, nucleation conditions and growth temperature. Cd or Te substrate treatment just before growth results in (100) and (111) orientation, respectively. Generally, layers with orientation (100) show superior morphology compared to (111) but they are also characterized by hillocks. The benefits of the precursors ethyl iodine (EI) and arsine (AsH3) for controlled iodine donor doping and arsenic acceptor doping are summarized. Suitable growth conditions and post growth anneal is essential for stable and reproducible doping. In-situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex-situ anneal at near saturated mercury vapours. The transport properties of HgCdTe epilayers indicate on achieving device quality material. Reproducible n- and p-type doping at the low, intermediate and high level (1015-1018 cm-3) has been achieved with stable iodine and arsenic dopants. The mobilities and carrier lifetimes achieved for extrinsically doped n-type and p-type layers follow essentially the same trends observed in state-of-the-art liquid phase epitaxy grown HgCdTe.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • VIGO System S.A., Świetlików Str., 01-389 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • VIGO System S.A., Świetlików Str., 01-389 Warsaw, Poland
autor
  • VIGO System S.A., Świetlików Str., 01-389 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • VIGO System S.A., Świetlików Str., 01-389 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. W.D. Lawson, S. Nielson, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe”, J. Phys. Chem. Solids 9, 325-329 (1959).
  • 2. P. Capper, “Bulk growth techniques”, in Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 3-29, edited by P. Capper, Chapman & Hall, London, 1997.
  • 3. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000.
  • 4. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159-174 (2002).
  • 5. L. Colombo, R.R. Chang, C.J. Chang, and B.A. Baird, “Growth of Hg-based alloys by the travelling heater method”, J. Vac. Sci. Technol. A6, 2795-2799 (1988).
  • 6. P. Capper, T. Tung, and L. Colombo, “Liquid phase epitaxy”, in Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 30-170, edited by P. Capper, Chapman & Hall, London, 1997.
  • 7. S.J.C. Irvine, “Metal-organic vapour phase epitaxy., Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications”, pp. 71-96, edited by P. Capper, Chapman & Hall, London, 1997.
  • 8. O.K. Wu, T.J. deLyon, R.D. Rajavel, and J.E. Jensen, “Molecular beam epitaxy of HgCdTe”, in Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 97-130, edited by P. Capper, Chapman & Hall, London, 1997.
  • 9. P. Mitra, F.C. Case, and M.B. Reine, “Progress in MOVPE of HgCdTe for advanced infrared detectors”, J. Electron. Mater. 27, 510-520 (1998).
  • 10. M.B. Reine, A. Hairston, P. O'Dette, S.P. Tobin, F.T.J. Smith, B L. Musicant, P. Mitra, F.C. Case, “Simultaneous MW/LW dual-band MOCVD HgCdTe 64×64 FPAs”, Proc. SPIE 3379, 200-212 (1998).
  • 11. C.D. Maxey, J.P. Camplin, I.T. Guilfoy, J. Gardner, R.A. Lockett, C.L. Jones, P. Capper, M. Houlton, and N.T. Gordon, “Metal-organic vapour-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates”, J. Electron. Mater. 32, 656-660 (2003).
  • 12. C.T. Elliott, “New infrared and other applications of narrow gap semiconductors”, Proc. SPIE 3436, 763-775 (1998).
  • 13. C.T. Elliott, “Photoconductive and non-equilibrium devices in HgCdTe and related alloys”, in Infrared Detectors and Emitters: Materials and Devices, pp. 279-312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, 2001.
  • 14. J. Piotrowski, W. Galus, and M. Grudzień, “Near room-temperature IR photodetectors”, Infrared Phys. 31, 1-48 (1991).
  • 15. J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, “A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicond. Sci. Technol. 13, 1209-1214 (1998).
  • 16. J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 111-122 (2004).
  • 17. W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M. B. Reine, R.P. Ruth “Key issues in HgCdTe-based focal plane arrays: An industry perspective” J. Vac. Sci. Technol. B10, 1359-1369(1992).
  • 18. L.M. Smith and J. Thompson, “Metal organic chemical vapour deposition (MOCVD) of cadmium telluride, mercury telluride and cadmium mercury telluride”, Chemtronics 4, 60-70 (1989).
  • 19. S.A. Svoronos, W.W Woo, S.J.C. Irvine, H.O. Sankur, and J. Bajaj “A model of the interdiffused multilayer process”, J. Electron. Mater. 25, 1561-1571 (1996).
  • 20. C. Theodoropoulos, N.K. Ingle, and T.J. Mountziaris, “Computational studies of the transient behaviour of horizontal MOVPE reactors”, J. Cryst. Growth 170, 72-76 (1997).
  • 21. H.R. Vydyanath, “Donor and acceptor dopants in Hg₁-xCdxTe alloys”, J. Vac. Sci. Technol. B9, 1716-1723 (1991).
  • 22. P. Mitra, Y.L. Tyan, T.R. Schimert, and F.C. Case, “Donor doping in metalorganic chemical vapour deposition of HgCdTe using ethyl iodine”, Appl. Phys. Lett. 65, 195-197 (1994).
  • 23. P. Mitra, F.C. Case, M.B. Reine, R. Starr, and M.H. Weiler, “Doping in MOVPE of HgCdTe: orientation effects and growth of high performance IR photodiodes”, J. Cryst. Growth 170, 542-548 (1997).
  • 24. C.D. Maxey, I.G. Gale, J.B. Clegg, and P.A.C. Whiffin, “Doping studies in MOVPE-grown CdxHg₁-xTe”, Semicond. Sci. Technol. 8, S183-S196 (1993).
  • 25. L. Svob, I. Cheze, A. Lusson, D. Ballutaud, J.F. Rommeluere, and Y. Marfaing, “Crystallographic orientation dependence of As incorporation in MOVPE-grown CdTe and corresponding acceptor electrical state activation”, J. Cryst. Growth 184/185, 459-464 (1998).
  • 26. S.J.C. Irvine, J. Bajaj, L.O. Bubulac, W.P. Lin, R.W. Gedridge, and K.T. Higa, “A new n-type doping precursor for MOCVD-IMP growth of detector quality MCT”, J. Electron. Mater. 22, 859-864 (1993).
  • 27. D.D. Edwall, L.O. Bubulac, and E.R. Gertner, “p-type doping of metalorganic chemical vapour deposition-grown HgCdTe by arsenic and antimony”, J. Vac. Sci. Technol. B10, 1423-1427 (1992).
  • 28. M.J. Bevan, M.C. Chen, and H.D. Shih, cHigh-quality p-type Hg₁-xCdxTe prepared by metalorganic chemical vapour deposition”, Appl. Phys. Lett. 67, 3750-3752 (1995).
  • 29. P. Mitra, Y.L. Tyan, F.C. Case, R. Starr, and M.B. Reine, “Improved arsenic doping in metalorganic chemical vapour deposition of HgCdTe and in-situ growth of high performance long wavelength infrared photodiodes”, J. Electron. Mater. 25, 1328-1335 (1996).
  • 30. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Phys. Technol. 46, 115-131 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.