PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of etching technologies used for HgCdTe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review is an attempt to survey all the etching techniques that have been used since the very beginning stages of HgCdTe device fabrication to the most recent ones. Recent state of the art device architectures such as high-density focal plane arrays, avalanche photodiodes, two-colour and multispectral detectors require isolation of high aspect ratio trenches with least etch induced damage at the surface and sidewalls. The most widely used dry etching techniques are electron cyclotron resonance plasma and inductively coupled plasma processing. Almost all the etching technologies have been summarized from chemistry and device perspective.
Słowa kluczowe
Twórcy
autor
  • Solid State Physics Laboratory, Lucknow Road, Delhi 110054, India
autor
  • Solid State Physics Laboratory, Lucknow Road, Delhi 110054, India
autor
  • Solid State Physics Laboratory, Lucknow Road, Delhi 110054, India
Bibliografia
  • 1. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159-174 (2002).
  • 2. C.R. Eddy. Jr., E.A. Dobisz, C.A. Hoffman, and J.R. Meyer, “Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas”, Appl. Phys. Lett. 62, 2362-2364 (1993).
  • 3. J.R. Meyer, F.J. Bartoli, C.A. Hoffman, and L.R. Ram Mohan, “Band edge properties of quasi-one-dimensional HgTe-CdTe heterostructures”, Phys. Rev. Lett. 64, 1963-1965 (15990).
  • 4. I.M. Kotina, L.M. Tukhonen, G.V. Patsenkina, A.V. Schucharev, and G.M. Gusiniskii, “Study of CdTe etching process in alcoholic solutions of bromine”, Semicond. Sci. Technol. 13, 890-894 (1998).
  • 5. J.R. Meyer, F.J. Bartoli, C.A. Hoffman, and L.R. Ram Mohan, Superlattice and Microstruct. 7, 387-395 (1990).
  • 6. N. Vodjdan and P. Parrens, “Reactive ion etching of GaAs with high aspect ratios with Cl₂-CH₄-H₂-Ar mixtures”, J. Vac. Sci. Technol. B5, 1591-1598 (1987).
  • 7. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson, and S.E. Butttrill, “Stoichiometric dry etching of mercury cadmium telluride using a secondary afterglow reactor”, J. Vac. Sci. Technol. A7, 676-681 (1989).
  • 8. J.L. Elkind and G.J. Orloff, “Reactive ion etching of HgCdTe with methane and hydrogen”, J. Vac. Sci. Technol. A10, 1106-1112 (1992).
  • 9. S.J. Pearton and F. Ren, “Plasma etching of ZnS, ZnSe, CdS, and CdTe in electron cyclotron resonance CH₄/H₂/Ar and H₂/Ar discharges”, J. Vac. Sci. Technol. B11, 15-19 (1993).
  • 10. C.R. Eddy Jr., E.A. Dobisz, J.R. Meyer, and C.A. Hoffman, “Electron cyclotron resonance reactive ion etching of fine features in Hg₁-xCdxTe using CH₄/H₂ plasmas”, J. Vac. Sci. Technol. A11, 1763-1767 (1986).
  • 11. R.C. Keller, M. Seelman Eggbert, and H.J. Richter, “Reaction chemistry and resulting surface structure of HgCdTe etched in CH₄/H₂ and H₂ ECR plasmas” J. Electron. Mat. 24, 1155-1160 (1995).
  • 12. J.D. Benson, A.J. Stoltz, A.W. Kalaczyec, M. Martinka, L.A. Almeida, P.R. Boyd, and J.H. Dinan, “Effect of photoresist feature geometry on electron-cyclotron resonance plasma etch reticulation of HgCdTe diodes”, J. Electron. Mater. 31, 822-826 (2002).
  • 13. W. Chang, T. Lee, and W.M. Lau, “An x-ray photoelectron spectroscopic study of chemical etching and chemomechamical polishing of HgCdTe”, J. Appl. Phys. 68, 4816-4819 (1990).
  • 14. V. Srivastav, R. Pal, B.L. Sharma, A. Naik, D.S. Rawal, V. Gopal, and H.P. Vyas, “Etching of mesa structures in HgCdTe”, J. Electron. Mat. (under review).
  • 15. Z. Sobierski, I.M. Dharmadasa, and H. Williams, “Correlation of photoluminescence measurements with the composition and electronic properties of chemically etched CdTe surfaces”, Appl. Phys. Lett. 53, 2623-2625 (1988).
  • 16. J.L. Shaw, R.E. Viturro, L.J. Brillson, and D.Lacroffe, “Chemically controlled deep level formation and band bending at metal-CdTe interfaces”, Appl. Phys. Lett. 53, 1723-1725 (1998).
  • 17. M. Hage-Ali, R. Stuck, A.N. Saxena, and P. Siffort, “Studies of CdTe surfaces with secondary ion mass spectrometry, Rutherford backscattering and ellipsometry”, Appl. Phys. Lett. 19, 25-33 (1979).
  • 18. R. Tenne, R. Brener, and R. Triboulet, “Chemical modifications of Hg0.1Cd0.9Te surfaces: Analysis with Auger electron spectroscopy”, J. Vac. Sci. Technol. A7, 2570-2574 (1989).
  • 19. R. Tenne and G. Hodes, “Improved efficiency of CdSe photoanodes by photoelectrochemical etching”, Appl. Phys. Lett. 37, 428-430 (1980).
  • 20. M. Sakashita, H.H. Strehblow, and M. Bettini, “Anodic oxide films and electrochemical reactions on Cd0.2Hg0.8Te”, J. Electrochem Soc. 18, 1710-1713 (1982).
  • 21. W.M. Moreau, Semiconductor Lithography Principles, Practices and Materials, New York Plenum Press, New York), pp. 631-685, 1987.
  • 22. T. Saitoh, T. Yokogawa, and T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl₂ electron cyclotron resonance plasma”, Appl. Phys. Lett. 56, 839-841 (1990).
  • 23. M.A. Foad, C.D.W. Wilkinson, C. Durscornib, and R.H. Williams, “CH₄/H₂: A universal reactive ion etch for II-VI semiconductors”, Appl. Phys. Lett. 60, 2531-2533 (1992).
  • 24. K. Ohtsuka, M. Imaizumi, and T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl₂ electron cyclotron resonance plasma”, Appl. Phys. Lett. 56, 839-841 (1990).
  • 25. W.R. Chen, S.J. Chang, Y.K. Su, W.H. Lan, A.C.H. Lin, and H. Chang, “Reactive ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H₂/Ar and CH₄/H₂/Ar”, Jpn. J. Appl. Phys. 39, 3308-3313 (2000).
  • 26. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson, and S.E. Buttrill Jr., “Stoichiometric dry etching of mercury cadmium telluride using a secondary afterglow reactor”, J. Vac. Sci. Technol. A7, 676-681 (1989).
  • 27. J.E. Spencer, T.R. Schimert, J.H. Dinan, D. Endres, and T.R. Hayes, “Methyl radical etching of compound semiconductors with a secondary afterglow reactor”, J. Vac. Sci. Technol. A8, 1690-1695 (1990).
  • 28. N. Hosokawa, N. Matsuzaki, and T. Asamaki, “Plasma assisted etching in microfabrication”, Jpn. J. Appl. Phys. Suppl.2, Pt. 1, p. 435 (1974).
  • 29. L. Zielinsski and G.C. Schwarz, Electrochem. Soc. Extended abstr. 75-1, 117-119 (1975).
  • 30. H.N. Yu, R.H. Dennard, T.P.H. Chang, C.M. Osburn, V. Dilonardo, and H.E. Kuhn, J. Vac. Sci. Technol. A12, 1297-1298 (1975).
  • 31. L. Holland and S.M. Ojha, Vacuum 26, 53-56 (1976).
  • 32. A. Semu, L. Montelius, P. Leech, D. Jamieson, and P. Silverberg, “Novel CH₄/H₂ metal organic reactive ion etching of Hg₁-xCdxTe”, Appl. Phys. Lett. 59, 1752-1754 (1991).
  • 33. A.J. Stoltz, M.R. Banish, J.H. Dinan, J.D. Benson, D.R. Brown, D.B. Chenault, and P.R. Boyd, “Antireflective structures in CdTe and CdZnTe surfaces by ECR Plasma etching”, J. Electron. Mater. 30, 733-737 (2001).
  • 34. M.A. Foad, A.P. Smart, M. Watt, C.M. Sotomayer Torres, and C.D. Wilkinson, “Reactive ion etching of II-VI semiconductors using a mixture of methane and hydrogen”, Electron. Lett. 27, 73-75 (1991).
  • 35. L. Svob, J. Chevallier, P. Ossart, and A. Mircea, J. Mater. Sci. Lett. 5, 1319-1321 (1986).
  • 36. M. Neswal, K.H. Gresslehner, K. Lishka, and K. Lubke, “Dry etching of CdTe/GaAs epilayers using CH₄/H₂ gas mixtures”, J. Vac. Sci. Technol. B11, 551-555 (1993).
  • 37. E.P.G. Smith, C.A. Musca, D.A. Redfern, J.M. Dell, and L. Faraone, “Reactive ion etching for mesa structuring in HgCdTe”, J. Vac. Sci. Technol. A17, 2503-2509 (1999).
  • 38. J. Antoszewski, C.A. Musca, J.M. Dell, and L. Faroane, “Small two dimensional arrays of mid wavelength infrared HgCdTe diodes fabricated by reactive ion etching induced p-to-n type conversion”, J. Electron. Mater. 32, 627-631 (2003).
  • 39. J. White, R. Pal, J.M. Dell, C.A. Musca, J. Antoszewski, L. Faroane, and P. Burke, “p-to-n type-conversion mechanisms for HgCdTe exposed to H₂/CH₄ plasmas”, J. Electron. Mater. 30, 762-767 (2001).
  • 40. O.P. Agnihotri, H.C. Lee, and K, Yang, “Plasma induced type conversion in mercury cadmium telluride”, Semicond. Sci. Technol. 17, R11-R19 (2002).
  • 41. M.J. Madau, Fundamentals of Microfabrication, The Science of Miniaturization, CRC Press, London, pp. 87-112 (2002).
  • 42. J. Kim, T.S. Koga, H.P. Gillis, M.S. Goorsky, G.A. Garwood, J.B. Varesi, D.R. Rhiger, and S.M. Johnson, “Low energy electron enhanced etching of HgCdTe”, J. Electron. Mater. 32, 677-685 (2003).
  • 43. K.A. Harris, D.W. Endres, R.W. Yanka, L.M. Mohnkern, and A.R. Reisinger, .Electron cyclotron resonance plasma etching of HgTe-CdTe superlattices grown by photo-assisted molecular beam epitaxy”, J. Electron. Mater. 24, 1201-1206 (1995).
  • 44. C.R. Eddy Jr., L.V.A. Shamamian, J.R. Meyer, C.A. Hoffman, and J.E. Butler, “Characterization of the CH₄/H₂/Ar high density plasma etching process for HgCdTe”, J. Electron. Mater. 28, 347-352 (1999).
  • 45. J. Baylet, O.G. Gravorand, E. Laffose, C. Vrgraud, S. Bellrad, and B.A. Venturies, “Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors”, J. Electron. Mater. 33, 690-700 (2004).
  • 45. R.C. Keller, M. Seelman-Eggbert, and H.J. Richter, “Dry etching of Hg₁-xCdxTe using CH₄/H₂/Ar/N₂ electron cyclotron resonance plasmas”, J. Electron. Mater. 25, 1270-1275 (1996).
  • 46. J.D. Benson, A.J. Stoltz, P.R. Boyd, M. Martinka, J.B. Varesi, L.A. Almeida, K.A. Oliver, A.W. Kaleczyc, S.M. Johnson, W.A. Radford, and J.H. Dinan, “Lithography factors that determine the aspect ratio of electron cyclotron resonance plasma etched HgCdTe trenches”, J. Electron. Mater. 32, 686-691 (2003).
  • 48. A.J. Stoltz and J.D. Benson, “The effect of electron cyclotron resonance parameters on the aspect ratio of trenches in HgCdTe”, J. Electron. Mater. 32, 692-697 (2002).
  • 49. A.J. Stoltz, J.D. Benson, M. Thomas, P.R. Boyd, M. Martinka, and J.H. Dinan, “Development of a high-selectivity process for electron cyclotron resonance plasma etching of II-VI semiconductors”, J. Electron. Mater. 31, 749-753 (2002).
  • 50. J.D. Benson, A.J. Stoltz, J.B. Varesi, M. Martinka, A.W. Kaleczys, L.A. Almeida, P.R. Boyd, and J.H. Dinan, “Determination of the ion angular distribution for electron cyclotron resonance, plasma etched HgCdTe trenches”, J. Electron. Mater. 33, 543-551 (2004).
  • 51. C. Haag and H. Shur, Plasma Chem. and Plasma Processing 6, 197-199 (1986).
  • 52. M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, pp. 472-511, New York, Johnson Wiley and Sons Inc., 1994.
  • 53. L.S. Hirsch, Z. Yu, S.L. Buczkowski, T.H. Myres and M.R. Richards-Babb, The use of atomic hydrogen for substrate cleaning for subsequent growth of II-VI semiconductors”, J. Electron. Mater. 26, 534-541 (1997).
  • 54. J.D. Benson, A.J. Stoltz, A.W. Kaleczyc, M. Martinka, L.A. Almieda, P.R. Boyd, and J.H. Dinan, “Effect of photoresistfeature geometry on electron-cyclotron resonance plasmaetch reticulation of HgCdTe diodes”, Proc. SPIE 4795, 129-135 (2002).
  • 55. M. Elwenspoek and H.V. Jansen, Silicon Micromachining, pp. 331-381, Cambridge University Press, Cambridge, 1998.
  • 56. H. Jansen, M. de Boer, R. Wiegerik, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, Microelectron. Eng. 35, 45-52 (1997).
  • 57. L. Zhang, L.F. Lester, R.J. Shul, C.G. Willison, and R.P. Leavitt, “Inductively coupled plasma etching of III-V antimonides in BCl₃/Ar and Cl₂/Ar”, J. Vac. Sci. Technol, B17, 965-969 (1999).
  • 58. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, M.S. Welkowsky, “Inductively coupled plasma etching of HgCdTe”, J. Electron. Mater. 32, 816-820 (2003).
  • 59. E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, “HgCdTe focal plane arrays for dual-color mid and long-wavelength infrared detection”, J. Electron. Mater. 33, 509-516 (2004).
  • 60. G. Gloersen, “Ion beam etching”, J. Vac. Sci. Technol. 12, 28-35 (1975).
  • 61. C.M. Smith, “Ion etching for plasma delineation”, J. Vac. Sci. Technol. 13, 1008-1022 (1976).
  • 62. J.L. Elkind, “Ion mill damage in n-HgCdTe”, J. Vac. Sci. Technol. B10, 1460-1465 (1992).
  • 63. E. Belas, R. Grill, J. Franc, A. Toth, P. Hoschl, H. Sitter, and P. Morovec, “Determination of the migration energy of Hg interstitials in (HgCd)Te from ion milling experiments”, J. Cryst. Growth, 159, 1117-1126 (1997).
  • 64. H. Jung, H.C. Lee, and C.K. Kim, “Enhancement of steady state minority carrier lifetime in HgCdTe photodiode using ECR plasma hydrogenation”, J. Electron. Mat. 25, 1266-1269 (1998).
  • 65. E. Belas, P. Hoschl, R. Grill, J. Franc, P. Moravec, K. Lischka, and H. Sitter, “Ultrafast diffusion of Hg in Hg₁-xCdxTe, J. Cryst. Growth 138, 940-953 (1994).
  • 66. R. Haakennaasen, T. Coloin, H. Steen, and L. Trosdahl-Iversen, “Electron beam induced current study of ion beam milling type conversion in molecular beam epitaxy vacancy doped CdxHg₁-xTe”, J. Electron. Mater. 29, 849-852 (2000).
  • 67. J.H. Dinan et al. IEEE/CPMT, Int. Elect. Manuf. Symp. Vol. 19, pp. 205-208, Piscataway, New York, IEEE, 1996.
  • 68. S.J. Pearton, Proc. SPIE 2999, 118-121 (1997).
  • 69. A.J. Stoltz, J.D. Benson, M. Thomas, P.R. Boyd, M. Martinka, and J.H. Dinan, “Development of a high-selectivity process for electron cyclotron resonance plasma etching of II-VI semiconductors”, J. Electron. Mater. 31, 749-753 (2002).
  • 70. C.R. Eddy Jr., E.A. Dobisz, J.R. Meyer, and C.A. Hoffman, “Electron cyclotron resonance reactive ion etching of fine features in HgxCd₁-xTe using H₂/CH₄ plasmas”, J. Vac. Technol. A11, 1763-1767 (1993).
  • 71. E.P.G. Smith, C.A. Musca, D.A. Redfernm J.M. Dell, and L. Faraone, “H₂-based dry plasma etching for mesa structuring of HgCdTe”, J. Electron. Mater. 29, 853-857 (2003).
  • 72. E. Belas, J. Franc. A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Hosch, “Type conversion of p-(HgCd)Te using H₂/CH₄ and Ar reactive ion etching”, Semicond. Sci. Tecnol. 11, 1116-1120 (1996).
  • 73. V. Mittal, K.P. Singh, R. Singh, and V. Gopal, Physics of Semiconductor Devices, pp. 799-01 edited by V. Kumar and S.K. Aggrawal, Narosa, New Delhi, 1998.
  • 74. A.J. Stoltz, J.D. Benson, J.B. Varesi, M. Martinka, M.J. Sperry, A.W. Kaleczyc, L.A. Almeida, P.R. Boyd, and J.H. Dinan, “Macro-loading effects of electron cyclotron resonance etched II-VI materials”, J. Electron. Mater. 33, 684-684 (2004).
  • 75. E.P.G. Smith, C.A. Musca, D.A. Redfern, and L. Faraone, “Reactive ion etching for mesa structuring in HgCdTe”, J. Vac. Sci. Technol. A17, 2503-2509 (1999).
  • 76. C. Haag and H. Shur, Plasma Chem. and Plasma Processing 6, 197-205 (1986).
  • 77. E.P.G. Smith, J.F. Siliquini, C.A. Musca, J. Antoszewski, J.M. Dell, L. Faraone, and J. Piotrowski, “Mercury annealing of reactive ion etching induced p-to-n type conversion in extrinsically doped p-type HgCdTe”, J. Appl. Phys. 83, 5555-5557 (1998).
  • 78. C.L. Jones, M.J.T. Quelch, P. Capper, and J.J. Gosney, “Effects of annealing on the electrical properties of CdxHg₁-xTe”, J. Appl. Phys. 53, 9080-9092 (1982).
  • 79. T. Sasoki, N. Oda, M. Kawano, S. Sone, T. Kanno and M. Saga, J. Cryst. Growth 117, 222 (1992).
  • 80. U. Solbach and H.J. Richter, Surf. Sci. 97, 191-196 (1980).
  • 81. T. Nguyen, J. Antoszewski, C.A. Musca, D.A. Redfern, J.M. Delll, and L. Faraone, “Transport properties of reactive-ion-etching-induced p-to-n type converted layers in HgCdTe”, J. Electron. Mater. 31, 652-659 (2002).
  • 82. E.P.G. Smith, G.M. Venzor, P.M. Goetz, J.B. Varesi, L.T. Pham, E.A. Patten, W.A. Radford, S.M. Johnson, A.J. Stoltz, J.D. Bensen, and J.H. Dinan, “Scalability of dry etch processing for small unit cell HgCdTe focal plane arrays”, J. Electron. Mat. 32, 821-826 (2003).
Uwagi
PL
Błędy w numeracji bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.