PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Steady state photorefractive gratings in multiple quantum wells at high modulation depth

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on Nonlinear Optics Applications ; (7 ; 17-20.06.2004 ; Konstancin, Poland)
Języki publikacji
EN
Abstrakty
EN
The steady-state analytical expressions for the space-charge field harmonics generated by the high contrast interference pattern in biased photorefractive material with ambipolar transport are presented. As an example semi-insulating multiple quantum wells film operating in the Franz-Keldysh geometry was considered. Parameters of photorefractive grating created by a quadratic electro-optic effect were analysed. Calculations based on the band transport model were limited to the low external field case what corresponds to the linear transport regime. In particular, it was found that the photogenerated carriers density has nearly harmonic distribution. Moreover, the fundamental component can be obtained from the linear equations what enables us to improve the solution for the space-charge field in bulk, nonresonant materials described by the classical Kukhtarev's model.
Twórcy
  • Institute of Electronics, Telecommunication and Informatics, Electrical Engineering Department, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
  • Institute of Electronics, Telecommunication and Informatics, Electrical Engineering Department, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
autor
  • Institute of Electronics, Telecommunication and Informatics, Electrical Engineering Department, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
Bibliografia
  • 1. J.P. Huignard and P. Gunter, Photorefractive Materials and their Applications II, Springer-Verlag, Berlin, Heidelberg 1988.
  • 2. P. Vaveliuk, B. Ruitz, N. Bolognini, and J. Fernandez, “Transient behaviour of the photorefractive space-charge field”, Phys. Rev. B62, 4511 (2000).
  • 3. N.V. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystal. 1 Steady state”, Ferroelectrics 22, 949 (1979).
  • 4. G.C. Valley, “Two-wave mixing with an applied field and a moving grating”, J. Opt. Soc. Am. B1, 868 (1984).
  • 5. P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley, New York, 1993.
  • 6. M.P. Petrov, S.I. Stepanov, and A.N. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer, New York, 1991.
  • 7. G.A. Brost, “Photorefractive grating formation at large modulation with alternating electric fields”, J. Opt. Soc. Am. B9, 1454 (1992).
  • 8. E. Serrano, V. López, M. Carrascosa, and F. Agulló-López, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths”, IEEE J. Quantum. Electron. 30, 875 (1994).
  • 9. A. Bledowski, J. Otten, and K.H. Ringhofer, “Photorefractive hologram writing with modulation 1”, Opt. Lett. 16, 672 (1991).
  • 10. L.B. Au and L. Solymar, “Space-charge field in photorefractive materials at large modulation”, Opt. Lett. 13, 660 (1988).
  • 11. P. Buchhave, “Computer simulation of multiple dynamic photorefractive gratings”, J. Opt. Soc. Am. B15, 1865 (1998).
  • 12. E. Serrano, V. López, M. Carrascosa, and F. Agulló-López, “Recording and erasure kinetics in photorefractive materials at large modulation depths”, J. Opt. Soc. Am. B11, 670 (1994).
  • 13. F. Vachss and L. Hesselink, “Nonlinear photorefractive response at high modulation depths”, J. Opt. Soc. Am. A5, 690 (1988).
  • 14. E. Serrano, M. Carrascosa, and F. Agulló-López, “Nonperturbative analytical solution for steady-state photorefractive recording”, Opt. Lett. 20, 1910 (1995).
  • 15. E. Serrano, M. Carrascosa, and F. Agulló-López, “Analytical and numerical study of photorefractive kinetics at high modulation depths”, J. Opt. Soc. Am. B13, 2587 (1996).
  • 16. B.I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena”, Appl. Phys. B68, 1013 (1999).
  • 17. N.V. Kukhtarev, P. Buchhave, and S. Lyuksyutov, “Optical and electric properties of dynamic holographic gratings with arbitrary contrast”, Phys. Rev. A55, 3133 (1997).
  • 18. P. Vaveliuk, B. Ruiz, O. Martinez Matos, G.A. Torchia, and N. Bolognini, “An electron-hole transport model for the analysis of the photorefractive harmonic gratings”, IEEE J. Quantum Electron. 37, 1040 (2001).
  • 19. P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings”, Phys. Rev. B59, 10985 (1999).
  • 20. P. Vaveliuk, A. Lencina, P.C. de Oliveira, and N. Bolognini, “Photorefractive harmonic gratings within the shallow trap model”, IEEE J. Quantum Electron. 38, 1541 (2002).
  • 21. R. Saxena and T.Y. Chang, “Perturbative analysis of higherorder photorefractive gratings”, J. Opt. Soc. Am. B9, 1467 (1992).
  • 22. S. Ducharme, J.C. Scott, R.J. Tweig, and W.E. Moerner, “Observation of the photorefractive effect in a polymer”, Phys. Rev. Lett. 66, 1846 (1991).
  • 23. I.C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film”, Opt. Lett. 20, 2137 (1995).
  • 24. A. Partovi, “Photorefractive multiple quantum well materials and applications to signal processing”, Opt. Mat. 4, 330 (1995).
  • 25. D.D. Nolte, D.H. Olson. G.E Doran, W.H. Knox, and A.M. Glass, “Resonant photorefractive effect in semi-insulating multiple quantum wells”, J. Opt. Soc. Am. B7, 2217 (1990).
  • 26. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3”, Phys. Rev. B49, 2484 (1994).
  • 27. Q. Wang, R.M. Brubaker, D.D. Nolte, and M.R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry”, J. Opt. Soc. Am. B9, 1626 (1992).
  • 28. D.D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications”, J. Appl. Phys. 85, 6259 (1999).
  • 29. A Partovi, A.M. Glass, and D.H. Olson, “High-speed photodiffractive effect in semi-insulating CdZnTe/ZnTe multiple quantum wells”, Opt. Lett. 17, 655 (1992).
  • 30. S. Iwamoto, H. Kageshima, and T. Yuasa, “Resonant photorefractive effect in InGaAs/GaAs multiple quantum wells”, Opt. Lett. 16, 321 (1999).
  • 31. R.M. Brubaker, Q.N. Wang, D.D. Nolte, and M.R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors”, Phys. Rev. Lett. 77, 4249 (1996).
  • 32. D.D. Nolte, T. Cubel, and L.J. Pyrak-Nolte, “Adaptive beam combining and interferometry with photorefractive quantum wells”, J. Opt. Soc. Am. B2, 195 (2001).
  • 33. L.F. Magaa, F. Agull-Lpez, and M. Carrascosa, “Role of physical parameters on the performance of semiconductor multiple quantum well”, J. Opt. Soc. Am. B11, 1651 (1994).
  • 34. Photorefractive Effects and Materials, Chapt. 1, edited by D.D. Nolte, Kluwer, Dordrecht, 1995.
  • 35. In Ref. 34, Chapt. 7.
  • 36. In Ref. 34, Chapt. 1.
  • 37. M.G. Moharam, T.K. Gaylord, and R. Magnusson, “Holographic grating formation in photorefractive crystals with arbitrary electron transport length”, J. Appl. Phys. 50, 5642 (1979).
  • 38. E. Ochoa, F. Vachss, and L. Hasselink, “Higher-order analysis of the photorefractive effect for large modulation depths”, J. Opt. Soc. Am. B3, 181 (1986).
  • 39. Q.N. Wang, D.D. Nolte, and M.R. Melloch, “Spatial-harmonic gratings at high modulation depths in photorefractive quantum wells”, Opt. Lett. 16, 1944 (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.