PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arrays of weakly coupled, periodically poled lithium niobate waveguides: beam propagation and discrete spatial quadratic solitons

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on Nonlinear Optics Applications ; (7 ; 17-20.06.2004 ; Konstancin, Poland)
Języki publikacji
EN
Abstrakty
EN
Discrete optical systems can be realized as arrays of parallel, weakly coupled, channel waveguides where light normally undergoes "discrete diffraction" via the weak coupling between adjacent channels. Here we describe how light can be forced to maintain a constant field profile on propagation in waveguide arrays, i.e., to localize into a discrete spatial soliton, by using the second order nonlinearity of periodically poled lithium niobate near phase-matching for second harmonic generation. Detailed sample characterization and experimental verification of the excitation of discrete quadratic solitons is reported.
Słowa kluczowe
Twórcy
autor
  • College of Optics and Photonics, FPCE and CREOL, University of Central Florida, Orlando, USA
autor
  • College of Optics and Photonics, FPCE and CREOL, University of Central Florida, Orlando, USA
autor
  • College of Optics and Photonics, FPCE and CREOL, University of Central Florida, Orlando, USA
autor
  • Friedrich-Schiller University, Jena, Germany
autor
  • Friedrich-Schiller University, Jena, Germany
autor
  • University of Paderborn, Paderborn, Germany
autor
  • University of Paderborn, Paderborn, Germany
Bibliografia
  • 1. E.A. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics”, At.&T. Tech. J. 48, 2071 (1969).
  • 2. S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, and R. G. Hunsperg, “Channel optical waveguide directional couplers“, Appl. Phys. Lett. 22, 46-47 (1973).
  • 3. M. Papuchon, Y. Combemale, X. Mathieu, D.B. Ostrowsky, L. Reiber, A.M. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler - cobra”, Appl. Phys. Lett. 27, 289-291 (1975).
  • 4. S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, and P.W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler”, Appl. Phys. Lett. 51, 1135-1137 (1987).
  • 5. A.L. Jones, “Coupling of optical fibers and scattering in fibers“, J. Opt. Soc. Am. 55, 261 (1965).
  • 6. D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices”, Nature 424, 817-823 (2003).
  • 7. D.N. Christodoulides and R.I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled wave-guides”, Opt. Lett. 13, 794-796 (1988).
  • 8. H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, and J.S. Aitchison, “Discrete spatial optical solitons in waveguide arrays”, Phys. Rev. Lett. 81, 3383-3386 (1998).
  • 9. J. S. Aitchison, A.M. Weiner, Y. Silberberg, M.K. Oliver, J.L. Jackel, D.E. Leaird, E.M. Vogel, and P.W.E. Smith, “Observation of spatial optical solitons in a nonlinear glass wave-guide”, Opt. Lett. 15, 471-473 (1990).
  • 10. G.I. Stegeman, D.J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons”, Opt. Quant. Electron. 28, 1691-1740 (1996).
  • 11. R. Schiek, Y. Baek, G. Krijnen, G.I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity”, Opt. Lett. 21, 940-942 (1996).
  • 12. R. Schiek, Y. Baek, and G.I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides”, Phys. Rev. E53, 1138-1141 (1996).
  • 13. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. Van Stryland, G.I. Stegeman, L. Torner, and C.R. Menyuk, “Observation of 2-dimensional spatial solitary waves in a quadratic edium”, Phys. Rev. Lett. 74, 5036-5039 (1995).
  • 14. S. Darmanyan, A. Kobyakov, and F. Lederer, “Strongly localized modes in discrete systems with quadratic nonlinearity“, Phys. Rev. E57, 2344-2349 (1998).
  • 15. T. Peschel, U. Peschel, and F. Lederer, “Discrete bright solitary waves in quadratically nonlinear media”, Phys. Rev. E57, 1127-1133 (1998).
  • 16. C. Etrich, F. Lederer, B. Malomed, T. Peschel, and U. Peschel, “Optical solitons in media with a quadratic nonlinearity”, in Progress in Optics, edited by Elsevier (2000).
  • 17. R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, “Observation of discrete quadratic solitons”, Phys. Rev. Lett. 93, 113902 (2004).
  • 18. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti : LiNbO3 channel waveguides”, Opt. Lett. 24, 896-898 (1999).
  • 19. E. Strake, G.P. Bava, and I. Montrosset, “Guided modes of Ti-LiNbO3 channel wave-guides - a novel quasi-analytical technique in comparison with the scalar finite-element method”, J. Lightwave Technol. 6, 1126-1135 (1988).
  • 20. R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, “Diffractionless propagation in low loss LiNbO3 channel waveguide arrays”, CLEO, CTuK13 (2002).
  • 21. A.V. Buryak, P. Di Trapani, D.V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications”, Phys. Rep. 370, 63-235 (2002).
  • 22. D. von der Linde, A.M. Glass, and K.F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3”, Appl. Phys. Lett. 25, 155-157 (1974).
  • 23. Y. Furukawa, K. Kitamura, A. Alexandrovski, R.K. Route, M.M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3”, Appl. Phys. Lett. 78, 1970-1972 (2001).
  • 24. D. Mandelik, H.S. Eisenberg, Y. Silberberg, R. Morandotti, and J.S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons”, Phys. Rev. Lett. 90, 053902 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.