PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete diffraction in an optically induced lattice in photorefractive media with a quadratic electro-optic effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on Nonlinear Optics Applications ; (7 ; 17-20.06.2004 ; Konstancin, Poland)
Języki publikacji
EN
Abstrakty
EN
Propagation of light in an optically induced waveguide array in biased photorefractive media with a quadratic electro-optic effect is investigated numerically with the beam propagation method. The refractive index distribution of the array is induced by two coherent plane waves interfering in a guiding layer in a photorefractive multiple quantum well (MQW) planar waveguide. The influence of modulation depth and the space period of an interference pattern as well as the external electric field intensity on diffraction properties of the array is analysed. The potential possibility of all-optical switching due to the dependence of the guided wave output distribution on the external waves parameters is shown.
Twórcy
autor
  • Department of Electrical Engineering, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
  • Department of Electrical Engineering, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
autor
  • Department of Electrical Engineering, Szczecin University of Technology, 17 Piastów Ave., 70-310 Szczecin, Poland
Bibliografia
  • 1. D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices”, Nature 422, 817 (2003).
  • 2. H.S. Eisenberg, Y. Silberberg, R. Morandotti, and J.S. Aitchison, “Diffraction management”, Phys. Rev. Lett. 85, 1863 (2000).
  • 3. A.A. Sukhorukov, Y.S. Kivshar, H.S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays”, IEEE J. Quantum Electron. 39, 31 (2003).
  • 4. F. Lederer, S. Darmanyan, and A. Kobyakov, “Discrete solitons” in Spatial Optical Solitons, Vol. 82, pp. 269-292, edited by S. Trillo and W.E. Torruellas, Springer-Verlag, New York, 2001.
  • 5. N.K. Efremidis, S. Sears, and D.N. Christodoulides, “Discrete solitons in photorefractive optically induced photonic lattices”, Phys. Rev. E66, 046602 (2002).
  • 6. J.W. Fleisher, T. Carmon, and M. Segev, “Observation of discrete solitons in optically induced real time waveguide arrays”, Phys. Rev. Lett. 90, 023902 (2003).
  • 7. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Królikowski, “Spatial solitons in optically induced gratings“, Opt. Lett. 28, 710 (2003).
  • 8. D. Neshev, A.A. Sukhorukov, B. Hanna, W. Królikowski, and Y.S. Kivshar, “Controlled generation and steering of spatial gap solitons”, Phys. Rev. Lett. 93, 083905 (2004).
  • 9. A.A. Sukhorukov, D. Neshev, W. Królikowski, and Y.S. Kivshar, “Nonlinear Bloch-wave interaction and Bragg scattering in optically induced lattices”, Phys. Rev. Lett. 92, 093901 (2004).
  • 10. Y.V. Kartashov, V.A. Vysloukh, and L. Torner, “Tunable soliton self-bending in optical with nonlocal nonlinearity”, Phys. Rev. Lett. 93, 153903 (2004).
  • 11. A.S. Desyatnikov, E. Ostrovskaya, Y.S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induces lattices”, Phys. Rev. Lett. 91, 153902 (2003).
  • 12. D. Neshev, Y.S. Kivshar, H. Martin, and Z. Chen, “Soliton stripes in two-dimensional nonlinear photonic lattices”, Opt. Lett. 29, 486 (2004).
  • 13. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains”, Phys. Rev. Lett. 92, 143902 (2004).
  • 14. E. Weinert-Rączka, M. Wichtowski, A. Ziółkowski, and G. Staroń, “Photorefractive grating in multiple quantum well planar waveguide”, Acta Physica Polonica A103, 229 (2003).
  • 15. N.V. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystal” 1 Steady state., Ferroelectrics 22, 949 (1979).
  • 16. Q. Wang, R.M. Brubaker, D.D. Nolte, and M.R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry”, J. Opt. Soc. Am. B9, 1626 (1992).
  • 17. M. Wichtowski, E. Weinert-Rączka, and A. Gajda, “Steady state photorefractive gratings in multiple quantum wells at high modulation depth”, 13, 157-169 (2005) to Opto-Electron. Rev.
  • 18. R.M. Brubaker, Q.N. Wang, D.D. Nolte, and M.R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors”, Phys. Rev. Lett. 77, 4249 (1996).
  • 19. Q.N. Wang, D.D. Nolte, and M.R. Melloch, “Spatial-harmonic gratings at high modulation depths in photorefractive quantum wells”, Opt. Lett, 16, 1944-1946 (1991).
  • 20. R. Scarmozzino, and R.M. Osgood Jr., “Finite difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications”, J. Opt. Soc. Am. B8, 724 (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.