PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of zooplankton communities in small lake outlets in relation to abiotic and biotic factors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to answer the following questions: (1) which environmental variables, biotic (fish predation) or abiotic factors, have a greater influence on the rate of zooplankton changes in lake outlet sections and (2) which plankters suffer the greatest reduction in the outlet section. Samples were collected in two locations at each of 18 lakes. The first site was right at the outflow; the second site was 0.2 km downstream from the outflow. At downstream sites the percentage contribution of Rotifera in zooplankton species number and abundance was higher than in the outflow, whilst the percentage contribution of Cladocera and Copepoda (except nauplii) in the zooplankton species number and abundance was lower at downstream sites than in outlets. The most important variables affecting the rate of zooplankton reduction in the lake outlets are the biomass of cyprinids and hydrological parameters along the outlet, such as discharge, current velocity, and depth. The most dramatic reductions involved daphnids, adult copepods, small cladocerans, and copepodites, while the reduction in the abundance of rotifers and nauplii was statistically insignificant.
Słowa kluczowe
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.Akopian M., Garnier J. & Pourriot R. (1999). A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. J. Plankton Res. 21(2), 285-297. DOI: 10.1093/plankt/21.2.285.
  • 2.Armitage P.D. & Capper M.H. (1976). The numbers, biomass and transport downstream of micro-crustaceans and Hydra from Cow Green Reservoir (Upper Teesdale). Freshwater Biol. 6(5), 425-432. DOI: 10.1111/j.1365-2427.1976.tb01630.x.
  • 3.Basu B.K. & Pick F.R. (1996). Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 41, 1572-1577.
  • 4.Bogatowa I.B. (1971). Daphnia magna Straus kak obiekt massowogo kultirowanija. Tr. Wsiezojuznogo Nauczno - Issled. Inst. Prud. Rybn. Chozjajstwa. 20, 98-124. (in Russian)
  • 5.Bogatova I.B., Shcherbina M.A, Ovinnikova B.B. & Tagirova N.A. (1971). Chemical composition of some planktonic animals under different conditions of growing. Gidrobiologiceski Zurnal. 7(5), 54-57. (in Russian)
  • 6.Campbell C.E. (2002). Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Can. J. Zool. 80(6), 997-1003. DOI. 10.1139/z02-077
  • 7.Chang K.H., Doi H., Imai H., Gunji F. & Nakano S.I. (2008). Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology. 9(2), 125-133. DOI: 10.1007/s10201-008-0244-6.
  • 8.Cerbin S., Donk E. & Gulati R.D. (2007). The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquat. Ecol.. 41(2), 263-271: DOI: 10.1007/s10452-007-9091-5.
  • 9.Czerniawski R. (2012). Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relation to abiotic and biotic factors. Pol. J. Ecol. 60(2), 323-338.
  • 10.Czerniawski R., Domagała J. (2010a). Zooplankton communities of two lake outlets in relation to abiotic factors. Cent. Eur. J. Biol.. 5(2), 240-255. DOI: 10.2478/s11535-009-0062-9.
  • 11.Czerniawski R. & Domagała J. (2010b). Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra). Hydrobiologia. 638(1), 137-149. DOI: 10.1007/s10750-009-0036-y.
  • 12.Czerniawski R. & Domagała J. (2012). Potamozooplankton communities in three different outlets from mesotrophic lakes located in lake-river system. Oceanol. Hydrobiol. St. 41(4), 46-56. DOI: 10.2478/s13545-012-0006-2
  • 13.Czerniawski R. & Pilecka-Rapacz M. (2011). Summer zooplankton in small rivers in relation to selected conditions. Cent. Eur. J. Biol. 4(5), 659-674. DOI: 1024.78/s11535-011-0024-x.
  • 14.Ejsmont-Karabin J. (1998). Empirical equations for biomass calculation of planktonic rotifers. Pol. Archiv. Hydrobiol. 45(4), 523-522.
  • 15.Ejsmont-Karabin J. & Węgleńska T. (1996). Changes in the zooplankton structure in the transitory river-lake-river zone. The River Krutynia system, Mazurian Lake District. Zesz. Nauk. Kom. "Człowiek i Środowisko". 13, 263-289. (in Polish)
  • 16.Fontaneto D., Melone G. & Ricci C. (2005). Connectivity and nestedness of the meta-community structure of moss dwelling bdelloid rotifers along a stream. Hydrobiologia. 542, 131-136. DOI: 10.1007/1-4020-4111-X_16.
  • 17.Gliwicz Z.M. (1985). Predation or food limitation: an ultimate reason for extinction of planktonic cladoceran species. Hydrobiol. Beih. Ergebn. Limnol. 21, 419-430.
  • 18.Jack J.D. & Thorp J.H. (2002). Impacts of fish predation on an Ohio River zooplankton community. J. Plankton Res. 24(2), 119-127. DOI: 10.1093/plankt/24.2.119.
  • 19.Lauridsen T.L., Pedersen L.J., Jeppesen E. & Søndergaard M. (1996). The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18(12), 2283-2294.
  • 20.Lair N. (2006). A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River. Res. Appl. 22(5), 567-593.
  • 21.Lazzaro X. (1987). A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia. 146(2), 97-167.
  • 22.Limburg K.E., Pace M.L., Fischer D. & Arend K. (1997). Consumption, selectivity, and use of zooplankton by larval striped bass and white perch in a seasonally pulsed estuary. Trans. Am. Fish. Soc. 126(1), 607-621.
  • 23.McCauley E. (1984). The estimation of the abundance and biomass of zooplankton in samples. In J.A. Downing & J.A. Rigler (Eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. (pp. 228-265) London: Blackwell Scientific Publication.
  • 24.Meng L. & Orsi J.J. (1991). Selective predation by larval striped bass on native and introduced copepods. Trans. Am. Fish. Soc. 120(2), 187-192.
  • 25.Nielsen D., Gigney H. & Watson G. (2010). Riverine habitat heterogeneity: the role of slackwaters in providing hydrologic buffers for benthic microfauna. Hydrobiologia. 638(1), 181-191. DOI: 10.1007/s10750-009-0039-8.
  • 26.O'Brien W.J. (1987). Planktivory by freshwater fish: thrust and parry in the pelagial. In: W.C. Kerfoot & A. Sih (Eds.), Predation. Direct and Indirect Impacts on Aquatic Communities. (pp. 3-16). Hanover and London: University Press of New England.
  • 27.Oksanen J., Kindt R., Legendre P., O'Hara B., Simpson G.L., Solymos P., Stevens M.H.H. & Wagner H. (2008). The Vegan Package. 1, 15-1. available via http://cran.r-project.org/web/packages/vegan/vegan.pdf
  • 28.Radwan S. (2004). Rotifers. Łódź: Oficyna Wydawnicza Tercja. (in Polish)
  • 29.Reckendorfer W., Keckeis H., Winkler G. & Schiemer F. 1999 Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biol. 41(3), 583-591. DOI: 10.1046/j.1365-2427.1999.00412.x.
  • 30.Richardson W.B. (1992). Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwater Biol. 28(2), 217-230. DOI: 10.1111/j.1365-2427.1992.tb00578.x.
  • 31.Richardson W.B. & Bartsch L.A. (1997). Effects of zebra mussels on food webs: interactions with juvenile bluegill and water residence time. Hydrobiologia. 354(1-3), 141-150. DOI: 10.1023/A:1003048431234.
  • 32.Romare P., Bergman E. & Hansson L.A. (1999). The impact of larval and juvenile fish on zooplankton and algal dynamics. Limnol. Oceanogr. 44(7), 1655-1666.
  • 33.Ruttner-Kolisko A. (1977). Suggestion for biomass calculation of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8, 71-76.
  • 34.Rybak J.I. & Błędzki L.A. (2010). Planktonic crustaceans of freshwaters. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego. (in Polish)
  • 35.Thorp J.H. & Casper A.F. (2002). Potential effects on zooplankton from species shifts in mussel planktivory: a field experiment in the St. Lawrence River. Freshwater Biol. 47(1), 107-119. DOI: 10.1046/j.1365-2427.2002.00787.x.
  • 36.Thorp J.H., Thoms M.C. & Delong M.D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123-147. DOI: 10.1002/rra.901.
  • 37.Walls M., Kortelainen I. & Sarvala J. (1990). Prey responses to fish predation in freshwater communities. Ann. Zool. Fennici. 27, 183-199
  • 38.Walks D.J. & Cyr M. (2004). Movement of plankton through lake-stream systems. Freshwater Biol. 49(6), 745-759. DOI: 10.1111/j.1365-2427.2004.01220.x.
  • 39.Wissel B., Boeing W.J. & Ramcharan C.W. (1998). Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnol. Oceanogr. 48(5), 1965-1976.
  • 40.Zhou S., Tang T., Wu N., Fu X. & Cai Q. (2008). Impact of small dam on riverine zooplankton. Internat. Rev. Hydrobiol. 93(3), 297-311. DOI: 10.1002/iroh.200711038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0029-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.