PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The hydrochemistry of peatland lakes as a result of the morphological characteristics of their basins

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The physico-chemical water characteristics and basin morphology of 10 well-preserved Pomeranian peatland lakes were examined. These are acidic (pH 3.95 – 5.99), softwater (1.5 š0.9 mg Ca dm-3), and oligotrophic water bodies. Their hydrochemical conditions differentiate them into two groups: poor (3.04 š2.77 mg C dm-3) and rich (10.36 š7.27 mg C dm-3) in organic carbon compounds. They differ in water colour (p = 0.02), humic acid concentration (p<0.001), redox potential (p = 0.007), and irradiance (PAR; p = 0.03). The hydrochemistry of the lakes is determined by their basin morphology, which affects the water colour and the concentrations of humic acids and organic carbon compounds
Rocznik
Strony
28--39
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.Banaś, K. (1999). Drainage of the organogenic habitats and functioning of lake ecosystems. In A. Barcikowski, M. Boiński & A. Nienartowicz (Eds.), Versatile role of forest, protection of nature, economy, education (pp. 191-199). Toruń: O. W. Turpress. (in Polish)
  • 2.Banaś, K. (2001). Impact of humic substances on underwater vegetation habitats. Gdańsk: Uniwersytet Gdański, Wydz. BGiO (dissertation). (in Polish)
  • 3.Banaś, K. (2004). Tendencies of changes of the physical and chemical characteristics of the water in Pomerania humin lakes, In A.T. Jankowski & M. Rzętała (Eds.), Lakes and artificial water reservoirs - functioning revitalization and protection (pp. 7-17). Katowice: University of Silesia - Faculty of Earth Science, Polish Limnological Society, Polish Geographical Society - Branch Katowice. (in Polish with Engl. summ.)
  • 4.Banaś, K. (2010). Morphology of peatland lakes. Limnological Review 10 (1), 3-14.7.
  • 5.Banaś, K. & Gos K. (2004). Effect of peat-bog reclamtion on the physico-chemical characteristics of the ground water in peat. Polish Journal of Ecology, 52(1): 69-74.
  • 6.Banaś, K. & Gos K. (2008). Features and diversity of pomeranian peatland lakes. In E. Bajkiewicz-Grabowska & D. Borowiak (Eds.), Anthropogenic and natural transformations of lakes (pp. 13-17). Gdańsk: Wyd. KLUG-PTLim.
  • 7.Banaś, K., Gos K. & Szmeja J. (2011). Factors controlling vegetation structure in peatland lakes. Aquatic Botany (in press); doi:10.1016/j.aquabot.2011.09.010
  • 8.Beck, K.C., Reuter J.H. & Purdue E.M. (1974). Organic and inorganic chemistry of some coastal plain rivers of the southeastern United States. Geochimica et Cosmochimica Acta, 38, 341-364.
  • 9.Bociąg, K. (1998). Submerged vegetation in the process of lake anthropogenic euhumication. In W. Lange & D. Borowiak (Eds.), Degradation hazards and lakes' protection (pp. 151-159). Gdańsk: Wyd. DJ. (in Polish)
  • 10.Bociąg, K. (2000). Transformation of submerged vegetation in the process of humification of lakes. Gdańsk: Uniwersytet Gdański, Wydz. BGiO (dissertation). (in Polish).
  • 11.Bociąg, K. & Szmeja J. (2001). Degeneration of the vegetation of softwater lakes under the influence of humic substances. Polish Journal of Ecology, 49(4), 319-326.
  • 12.Buffle, J. (1984). Natural organic matter and metal-organic interactions in aquatic systems. In H. Siegel (Eds.) Metal Ions in Biological Systems (pp. 165-221). New York: Marcel Dekker.
  • 13.Driscoll, C.T., Baker J.P., Bisogni J.J. & Schofield C.L. (1980). Effects of aluminium speciation on fish in dilute acidified waters. Nature, 284: 161-164.
  • 14.Driscoll, C.T., Fuller R.D. & Simone D.M. (1988). Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual., 17, 101-107.
  • 15.Effler, S.W., Schafran G.C. and Driscoll C.T. (1985). Partitioning light atteuation in an acidic lake. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1707-1711.
  • 16.Eaton, A.D., Clesceri L.S., Rice E.W. & Greenberg A.E. (2005). Standard methods for the examination of water and wastewater (21th ed.). Washington: American Public Health Association, American Water Works Association and Water Environment Federation.
  • 17.Engstrom, D.R. (1987). Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44, 1306-1314.
  • 18.Gorham, E., Underwood J.K., Martin F.B. & Ogden J.G. (1986). Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature, 324, 451-453.
  • 19.Górniak, A. (1996), Humic substances and their role in the functioning of freshwater ecosystems, Warszawa: Diss. Univ. Varsov. (in Polish)
  • 20.Gos, K., Bociąg K. and Banaś K. (1998). Submerged vegetation in the acid lakes of Pomerania. In J. Banaszak & K. Tobolski (Eds.), Tuchola Forests National Park (pp. 261-277), Bydgoszcz: Wyd. WSP. (in Polish)
  • 21.Guildford, S.J., Healey F.P. & Hecky R.E. (1987). Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, northern Manitoba. Canadian Journal of Fisheries and Aquatic Sciences, 44, 1408-1417.
  • 22.Hays, W.L. (1988). Statistics (3rd ed.). New York: Holt, Rinehart & Winston.
  • 23.Hutchinson, G.E. (1975). A Treatise on Limnology. III. Limnological Botany. New York, Wiley.
  • 24.Ilnicki, P. (2002). Peatlands and peat. Poznań: Wyd. Akademii Rolniczej w Poznaniu. (in Polish)
  • 25.Jackson, T.A. & Hecky R.E. (1980). Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Canadian Journal of Fisheries and Aquatic Sciences, 37, 2300-2317.
  • 26.Kinniburgh, D.G., Milne C.J., Benedetti M.F., Pinheiro J.P., Filius J., Koopal L.K. & Van Riemsdijk W.H. (1996). Metal ion binding by humic acid: application of the NICADonnan Model. Environ. Sci. Technol. 30(5), 1687-1698.
  • 27.Lange, W. (1993). Physicolimnological methods of study, Gdańsk: Wyd. UG. (in Polish)
  • 28.Lillie, R.A. & Mason J.W. (1983). Limnological characteristics of Wisconsin lakes. Madison: Wis. Dept. of Natural Resources Tech. Bull.
  • 29.McKnight, D., Thurman E.M., Wershaw R. & Hemond H. (1985). Biogeochemistry of aquatic humic substances in Thoreau's Bog. Concord, Massachusetts, Ecology, 66, 1339-1352.
  • 30.Milliken, G.A. & Johnson D.E. (1984). Analysis of messy data. (Vol. I). Designed experiments. New York: Van Nostrand Reinhold Co.
  • 31.Overton, W., Kanciruk P., Hook L., Eilers J., Landers D., Brakke D., Blick D. & Linthurst R. (1986). Lakes sampled and descriptive statistics for physical and chemical variables. Characteristics of Lakes in the Eastern United States (Vol. 2). Washington, USA: Environ. Prot. Agency.
  • 32.Pienitz, R. & Smol J.P. (1993). Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270, 391-404.
  • 33.Rogalla, J.A. (1986). Empirical acidification modeling for lakes in the upper Great Lakes region. M.S. thesis, Minneapolis: Univ. of Minn.
  • 34.Sholkovitz, E.R. & Copland D. (1982). The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta, 46, 393-410.
  • 35.Spence, D.H.N. (1982). The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12, 37-125.
  • 36.Sposito, G. (1986). Sorption of trace metals by humic materials in soils and natural waters. Rev. Environ. Control, 16(2), 193-229.
  • 37.Stewart, A.J. & Wetzel R.G. (1982). Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwater Biology, 12, 369-380.
  • 38.Szmeja, J. (1992). Structure, spatial organization and demography of isoetid populations, Gdańsk, Zesz. Nauk. UG, Rozprawy i Monografie 175, 1-137. (in Polish)
  • 39.Szmeja, J. (2000). Tendences of changes in the flora and vegetation structure o pomeranian lakes under the influence of humic substances. In B. Jackowiak (Eds.) Mechanisms of Anthropogenic changes of the plant cover (pp. 85-97), Poznań: Bogucki Wyd. Nauk.
  • 40.Szmeja, J., Bazydło E. & Uruska A. (2000). Role of humic substances in the determination of Sphagnum denticulatum Brid. and Myriophyllum spicatum L. habitat conditions. Polish Journal of Ecology, 49(2), 101-113.
  • 41.Szpakowska, B. & Życzyńska-Błoniak I. (1994). The role of biogeochemical barriers in water migration of humic substances. Pol. J. Envir. Studies 3, 35-41.
  • 42.Ter Braak, C.J.F. & Smilauer P. (1998). CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination, New York: Microcomputer Power.
  • 43.Ter Braak, C.J.F. & Smilauer P. (2002). CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). NY, Ithaca USA: Microcomputer Power.
  • 44.Tobolski, K. (2003). Peatland on example of the Świecka ground. Świecie: Towarzystwo Przyjaciół Dolnej Wisły. (in Polish)
  • 45.Urban, N.R., Eisenreich S.J. & Gorham E. (1987). Proton Cycling in bogs: Geographic variation in northeastern North America. In T.C. Hutchinson & K.M. Meema (Eds.) The Effects of Air Pollutants on Forests (pp. 577-598), Springer-Verlag, New York: Wetlands and Agricultural Ecosystems
  • 46.Urban, N.R., Bayley S.E. & Eisenreich S.J. (1989). Export of dissolved organic carbon and acidity from peatlands. Water Resources Research, 25(7), 1619-1628.
  • 47.Wetzel, R.G. (2001). Limnology. Lake and river ecosystems, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press.
  • 48.Wright, R. (1983). Predicting acidification of North American lakes, Acid Rain Res. Ser. Rep. 4, Oslo: Norw. Inst. Water Res.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.