PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cyanobacterium Synechocystis aquatilis was observed growing as a monospecies in enriched phytoplankton samples in the laboratory, indicating its allelopathic activity on coexisting phytoplankton species. Therefore, the present study screened the culture medium of an axenic strain of this cyanobacterium for the presence of allelechemicals with algicidal properties by thin-layer chromatography (TLC). The allelopathic effect of S. aquatilis was evaluated by co-cultivation of target species of toxic cyanobacteria and green algae with this cyanobacterium, as well as by evaluation of norharmane (β-carboline 9H-pyrido(3,4-b) indole) crude extract prepared from the culture medium of Synechocystis. The growth of target algal species was measured as a cell density after 6 days incubation. The results showed that S. aquatilis produced the indole alkaloid norharmane with large quantities in the culture medium (86 μg l-1). In co-cultivation experiments, S. aquatilis inhibited the growth of all tested cyanobacteria and green algae. Norharmane crude extract exhibited stronger inhibition of cyanobacteria (EC50 = 4.6-4.8 μg ml-1) than green algae (EC50= 6.3-6.4 μg ml-1) in a concentration-dependent manner, indicating its apparent role in the allelopathic activity of S. aquatilis. The possible applicability of the allelochemical, norharmane, as an algicide to prevent the formation of harmful algal bloom was discussed.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 41 poz., wykr.
Twórcy
autor
Bibliografia
  • 1.Al-Shehri, A.M. (2010). Toxin-producing blooms of the cyanobacterium Microcystis aeruginosa in rainwater ponds in Saudi Arabia. Oceanol. Hydrobiol. Stud. 4:173-189.
  • 2.American Public Health Association (APHA), 1995, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
  • 3.Bais, H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301: 1377-1380.
  • 4.Becher, P.G., Beuchat J., Gademann K., Jüttner F. (2005). Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J. Nat. Prod. 68: 1793-1795.
  • 5.Blom, J.F., Brütsch T., Barbaras D., Bethuel Y., Locher H.H., Hubschwerlen C., Gademann K. (2006). Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org. Lett. 8: 737-740.
  • 6.Churro, C., Alverca E., Sam-Bento F., Paulino S., Figueira V.C., Bento A.J., Prabhakar S., Lobo A.M., Calado A.J., Pereira P. (2009). Effects of bacillamide and newly synthesized derivatives on the growth of cyanobacteria and microalgae cultures. J. Appl. Phycol. 21: 429-442.
  • 7.Czaran, T.L., Hoekstra R.F., Pagie L. (2002). Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99:786-790.
  • 8.Erhard, D. (2006). Allelopathy in aquatic environments. In M.J. Reigosa, N. Pedrol, L. Gonzalez, AA Dordrecht (Eds.) Allelopathy A Physiological Process with Ecological Implications. (pp. 433-450) The Netherlands
  • 9.Erhard, D., Gross E.M. (2006). Allelopathic activity of Elodea Canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat. Bot. 85: 203-211.
  • 10.Figueredo, C.C., Giani A, Bird D.F. (2007). Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion?. J. Phycol. 43: 256-265.
  • 11.Finney, D.J. (1963). Probit Analysis (rev. ed.) (pp. 165-175) San Diego
  • 12.Gademann, K. (2007). Cyanobacterial Natural Products for the Inhibition of Biofilm Formation and Biofouling. Chimia 61: 373-377.
  • 13.Gross, E.M. (2003). Allelopathy in aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313-339.
  • 14.Gumbo, J.R., Ross G., Cloete, T.E. (2010). The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr. J. Biotechnol. 9: 663-671.
  • 15.Jaki, B., Heilmann J., Sticher O. (2000). New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63: 1283-1285.
  • 16.Jaki, B., Zerbe O., Heilmann J., Sticher O. (2001). Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod. 63:154-158.
  • 17.Jeong, J., Jin H., Sohn C., Suh K., Hong Y. (2000). Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12: 37-43.
  • 18.Kodani, S., Imoto A., Mitsutani A., Murakami M. (2002). Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14:109-114.
  • 19.Krebs, C.J. (2000). Ecology: the experimental analysis of distribution and abundance. Benjamin-Cummings Publishing Company 2000 San Francisco, CA: Benjamin-Cummings Publishing Company
  • 20.Lambers, H., Chapin F.S., Pons T.L. (1998). Plant physiological ecology. Springer-Verlag 1999 Berlin: Springer-Verlag
  • 21.Leflaive, J., Ten-Hage L. (2006). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol. 52: 199-214.
  • 22.Legrand, C., Rengefors K., Fistarol G.O., Granéli E. (2003). Allelopathy in phytoplankton-biochemical, ecological, and evolutionary aspects. Phycol. 42: 406-419.
  • 23.Macías, F.A., Galindo J.L.G., Garcia-Diaz M.D., Galindo J.C.G. (2007). Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev. 7: 155-178.
  • 24.Mohamed, Z.A., Al Shehri A.M. (2009). Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater. 172: 310-315.
  • 25.Park, M.H., Han M.S., Ahn C.Y., Kim H.S., Yoon B.D., Oh H.M. (2006a). Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett. Appl. Microbiol. 43: 307-312.
  • 26.Park, M.H., Hwang S.J., Ahn C.Y., Kim B.H., Oh H.M. (2006b). Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kutz. em. Elenkin. Bull. Environ. Cont. Toxicol. 77: 9-14.
  • 27.Rastogi, R.P., Sinha R.P. (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27: 521-539.
  • 28.Rice, E.L. (1984) Allelopathy, 2nd edn. Academic Press, Orlando, (pp. 189-205)
  • 29.Smith, G.D., Doan N.T. (1999). Cyanobacterial metabolites with bioactivity against photosynthesis in Cyanobacteria, algae and higher plants. J. Appl. Phycol. 11: 337-344
  • 30.Stanier, R. Y. (1977). The position of cyanobacteria in the world of phototrophs. Carlsberg Res. Commun. 42: 77-98.
  • 31.Takamo, K., Igarashi S., Mikami H., Hino S. (2003). Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnol. 4: 73-78.
  • 32.Uronen, P., Kuuppo P., Legrand C., Tamminen T. (2007). Allelopathic Effects of Toxic Haptophyte Prymnesium parvum Lead to Release of Dissolved Organic Carbon and Increase in Bacterial Biomass. Microbial. Ecol. 54: 183-193.
  • 33.Vardi, A., Schatz D., Beeri K., Motro U., Sukenik A., Levine A., Kaplan A. (2002). Dinoflagellate cyanobacteria communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 12: 1767-1772.
  • 34.Verschuere, L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. J. Microbiol. Mol. Biol. Rev. 64: 655-671.
  • 35.Vivanco, J.M., Harsh H.P., Bais P., Stermitz F.R., Thelen G.C., Callaway R.M. (2004). Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol. Lett. 7: 285-292.
  • 36.Volk, R. B. (2008) Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid. Microbiol. Res. 163: 307-313.
  • 37.Volk, R.B. (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J. Appl. Phycol. 17: 339-34.
  • 38.Volk, R.B. (2006). Antialgal activity of several cyanobacterial exometabolites. J. Appl. Phycol. 18: 145-151.
  • 39.Volk, R.B. (2007). Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 19: 491-495.
  • 40.Volk, R.B., Furkert F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161: 180-186.
  • 41.Volk, R.B., Mundt S. (2006). Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 17: 339-347.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.