PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling flow in the porous bottom of the Barents Sea shelf

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In their recent paper, Węsławski et al. (2012) showed that the Svalbardbanken area of the Barents Sea is characterized by a high organic carbon settlement to the permeable sea bed, which consists of gravel and shell fragments of glacial origin. In the present paper, which can be considered as a supplement to the Węsławski et al. paper, two potential hydrodynamic mechanisms of downward pore water transport into porous media are discussed in detail. In particular, estimated statistical characteristics of the pore water flow, induced by storm surface waves, indicate that the discharge of water flow can be substantial, even at large water depths. During stormy weather (wind velocity V=15 m s-1 and wind fetch X =200 km) as much as 117.2 and 26.1 m3 hour-1 of water filter through the upper 5 m of the shell pit at water depths of 30 and 50 m respectively. For a porous layer of greater thickness, the mean flow discharge is even bigger. The second possible mechanism of flow penetration in the porous layer is based on the concept of geostrophic flow and spiral formation within the Ekman layer. Assuming that the current velocity in the near-bottom water layer is u- = 1 m, the resulting mean discharge through this layer becomes as large as 0.99 and 0.09 m3 s-1 for downstream and transverse flows respectively.
Słowa kluczowe
Czasopismo
Rocznik
Strony
129--146
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland
Bibliografia
  • 1.Bear J., 1972, Dynamics of fluids in porous media, Elsevier, Dover, New York, 764 pp.
  • 2.Cushman-Roisin B., 1994, Introduction to geophysical fluid dynamics, Prentice Hall, Englewood Cliffs, 320 pp.
  • 3.Danielson S., Kowalik Z., 2005, Tidal currents in the St. Lawrence Island region, J. Geophys. Res., 110, C10004, http://dx.doi.org/10.1029/2004JC002463
  • 4.Gjevik B., Nost E., Straume T., 1994, Model simulations of the tides in the Barents Sea, J. Geophys. Res., 99 (C2), 3337-3350, http://dx.doi.org/10.1029/93JC02743
  • 5.Klute A., Dirksen C., 1986, Hydraulic conductivity and diffusivity: laboratory methods, [in:] Methods of soil analysis. Part 1. Physical and mineralogical methods, Agronomy Monograph No. 9, 2nd edn., Am. Soc. Agronom., Madison, WI, 687-734.
  • 6.Kowalik Z., Proshutinsky A. Yu., 1995, Topographic enhancement of tidal motion in the western Barents Sea, J. Geophys. Res., 100 (C2), 2613-2637, http://dx.doi.org/10.1029/94JC02838
  • 7.Massel S. R., 1999, Fluid mechanics for marine ecologists, Springer, Heidelberg, 566 pp., http://dx.doi.org/10.1007/978-3-642-60209-2
  • 8.Massel S. R., Przyborska A., Przyborski M., 2004, Attenuation of wave-induced groundwater pressure in shallow water. Part 1, Oceanologia, 46 (3), 383-404.
  • 9.Massel S. R., Przyborska A., Przyborski M., 2005, Attenuation of wave-induced groundwater pressure in shallow water. 2. Theory, Oceanologia, 47 (3), 281-323.
  • 10.Papoulis A., 1965, Probability, random variables and stochastic processes, McGraw- Hill Book Co., New York, 583 pp.
  • 11.Sanford W. E., Steenhuis T. S., Parlange J.-Y., Surface J. M., Peverly J. H, 1995, Hydraulic conductivity of gravel and sand as substrates in rock-reed filters, Ecol. Eng., 4 (4), 321-336, http://dx.doi.org/10.1016/0925-8574(95)00004-3
  • 12.Węsławski J. M., Kędra M., Przytarski J., Kotwicki L., Ellingsen I., Skardhamar J., Renaud P., Goszczko I., 2012, A huge biocatalytic filter in the centre of Barents Sea shelf?, Oceanologia, 54 (2), 325-335, http://dx.doi.org/10.5697/oc.54-2.325
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.