PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface wave generation due to glacier calving

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.
Czasopismo
Rocznik
Strony
101--127
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland, smas@iopan.gda.pl
Bibliografia
  • 1.Abramowitz M., Stegun I.A., 1975, Handbook of mathematical functions, Dover Publ., New York, 1045 pp.
  • 2.Amundson J. M., Truffer M., Lutki M.P., Fahnestock M., West M., Motyka R. J., 2008, Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland, Geophys. Res. Lett., 35 (22), http://dx.doi.org/10.1029/2008GL035281
  • 3.Amundson J. M., Fahnestock M., Truffer M., Brown J., Lutki M.P., Motyka R. J., 2010, Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland, J. Geophys. Res., 115 (F1), 12 pp., http://dx.doi.org/10.1029/2009JF001405
  • 4.Błaszczyk M., Jania J.A., Hagen J.O., 2009, Tidewater glacier of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.
  • 5.Brown C. S., Meier M. F., Post A., 1982, Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier, U.S. Geol. Surv. Prof. Pap., 1258-C.
  • 6.Cointe R., Armand J.L., 1987, Hydrodynamic impact analysis of a cylinder, J. Offshore Mech. Arctic Eng., 109 (3), 237-243, http://dx.doi.org/10.1115/1.3257015
  • 7.Cooker M. J., 1996, Sudden changes in a potential flow with a free surface due to impact, Q. J. Mech. Appl. Math., 49, 581-591, http://dx.doi.org/10.1093/qjmam/49.4.581
  • 8.De Backer G., Vantorre M., Beels C., De Pre J., De Rouck J., Blommaert C., Van Paepegem W., 2009, Experimental investigation of water impact of axisymmetric bodies, Appl. Ocean Res., 31 (3), 143-156, http://dx.doi.org/10.1016/j.apor.2009.07.003
  • 9.De Risio H., Sammarco P., 2008, Analytical modeling of landslide-generated waves, J. Waterw. Port C. Div., 134 (1), 53-60, http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53)
  • 10.Glosh N.K., 1991, A cylindrical wave-maker problem in a liquid of finite depth with an inertial surface in the presence of surface tension, J. Austral. Math. Soc., Ser. B, 111-121.
  • 11.Hanson B., Hooke R. L., 2000, Glacier calving: a numerical model of forces in the calving-speed/water-depth relation, J. Glaciol., 46 (153), 188-196, http://dx.doi.org/10.3189/172756500781832792
  • 12.Hughes T., 1992, Theoretical calving rates from glaciers along ice walls grounded in water of variable depths, J. Glaciol., 38 (129), 282-294.
  • 13.Lamb H., 1932, Hydrodynamics, Dover Publ., London, 738 pp.
  • 14.Lavrentiev M.A., Shabat B.V., 1958, Methods of theory functions of complex variables, Gos. Izd. Fiz-Math. Moscow, 678 pp., (in Russian).
  • 15.Levermann A., 2011, When glacial giants roll over, Nature, 472 (7341), 43-44, http://dx.doi.org/10.1038/472043a
  • 16.MacAyeal D.R., Abbot D. S., Siergienko O.V., 2011, Iceberg-capsize tsunami genesis, Ann. Glaciol., 52 (58), 51-56, http://dx.doi.org/10.3189/172756411797252103
  • 17.Massel S.R., 1967, Distribution of pressure-impulse on a cylindrical vessel body during side launching, Rozpr. Hydr., 20, 37-52, (in Polish).
  • 18.Massel S.R., 2012, Tsunami in coastal zone due to meteorite impact, Coast. Eng., 66, 40-49, http://dx.doi.org/10.1016/j.coastaleng.2012.03.013
  • 19.Nelson R.C., 1996, Hydraulic roughness of coral reef platforms, Appl. Ocean Res., 18, 265-274, http://dx.doi.org/10.1016/S0141-1187(97)00006-0
  • 20.Newman J.N., 1977, Marine hydrodynamics, The MIT Press, Cambridge, 367 pp.
  • 21.Noda E., 1970, Water waves generated by landslides, J. Waterw. Port. C Div., 96 (4), 835-855.
  • 22.Oerlemans J., Jania J., Kolendra L., 2011, Application of a minimal glacier model to Hansbreen, Svalbard, The Cryosphere, 5, 1-11, http://dx.doi.org/10.5194/tc-5-1-2011
  • 23.Peng W., Peregrine D.H., 2000, Pressure-impulse theory for plate impact on water surface, Proc. 15 Int. Workshop on Water Waves and Floating Bodies, Caesarea, 146-149.
  • 24.Piessens R., 1996, The Hankel transform, [in:] The transforms and applications handbook, A.D. Poularikas (ed.), 2nd edn., CRC Press, Boca Raton, 1336 pp.
  • 25.Schlichting H., 1960, Boundary layer theory, McGraw Hill Book Co., New York, 647 pp.
  • 26.Stanley S. J., Jenkins A., Guilivi C. F., Dutrieux P., 2011, Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4 (8), 519-523, http://dx.doi.org/10.1038/ngeo1188
  • 27.Stoker J., 1957, Water waves, Intersci. Publ., New York, 567 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.